Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters











Publication year range
1.
Materials (Basel) ; 17(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38793371

ABSTRACT

In the realm of accelerated testing within controlled laboratory settings, the fidelity of the service environment assumes paramount importance. It is imperative to replicate real-world conditions while compressing the testing duration to facilitate early evaluations, thereby optimizing time and cost efficiencies. Traditional immersion protocols, reflective solely of full ballast tank conditions, inadequately expedite the corrosion process representative of an average ballast tank environment. Through the integration of immersion with fog/dry conditions, aligning the test protocol more closely with the internal conditions of an average ballast tank, heightened rates of general corrosion are achieved. This augmentation yields an acceleration factor of 7.82 times the standard test duration, under the assumption of a general corrosion rate of 0.4 mm/year for uncoated ballast tank steel, with both sides exposed. Subsequently, the fog/dry test protocol, albeit only resembling the environment of an empty ballast tank, closely trails in terms of acceleration efficacy. The fog/dry test protocol offers cost-effectiveness and replicability compared to the AMACORT CIFD-01 protocol, making it a strong competitor despite the relatively close acceleration factor.

2.
Materials (Basel) ; 16(3)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36770132

ABSTRACT

Various industrial surface materials are tested for their photocatalytic self-cleaning activity by performing the ISO 27448:2009 method. The samples are pre-activated by UV irradiation, fouled with oleic acid and irradiated by UV light. The degradation of oleic acid over time is monitored by taking water contact angle measurements using a contact angle goniometer. The foulant, oleic acid, is an organic acid that makes the surface more hydrophobic. The water contact angle will thus decrease over time as the photocatalytic material degrades the oleic acid. In this study, we argue that the use of this method is strongly limited to specific types of surface materials, i.e., only those that are hydrophilic and smooth in nature. For more hydrophobic materials, the difference in the water contact angles of a clean surface and a fouled surface is not measurable. Therefore, the photocatalytic self-cleaning activity cannot be established experimentally. Another type of material that cannot be tested by this standard are rough surfaces. For rough surfaces, the water contact angle cannot be measured accurately using a contact angle goniometer as prescribed by the standard. Because of these limitations, many potentially interesting industrial substrates cannot be evaluated. Smooth samples that were treated with an in-house developed hydrophilic titania thin film (PCT/EP2018/079983) showed a great photocatalytic self-cleaning performance according to the ISO standard. Apart from discussing the pros and cons of the current ISO standard, we also stress how to carefully interpret the results and suggest alternative testing solutions.

3.
ChemSusChem ; 16(5): e202201647, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36626298

ABSTRACT

Direct photocatalytic reduction of CO2 has become an highly active field of research. It is thus of utmost importance to maintain an overview of the various materials used to sustain this process, find common trends, and, in this way, eventually improve the current conversions and selectivities. In particular, CO2 photoreduction using plasmonic photocatalysts under solar light has gained tremendous attention, and a wide variety of materials has been developed to reduce CO2 towards more practical gases or liquid fuels (CH4 , CO, CH3 OH/CH3 CH2 OH) in this manner. This Review therefore aims at providing insights in current developments of photocatalysts consisting of only plasmonic nanoparticles and semiconductor materials. By classifying recent studies based on product selectivity, this Review aims to unravel common trends that can provide effective information on ways to improve the photoreduction yield or possible means to shift the selectivity towards desired products, thus generating new ideas for the way forward.

4.
Environ Sci Pollut Res Int ; 30(9): 22262-22272, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36282379

ABSTRACT

Particulate matter is one of the most persistent global air pollutants that is causing health problems, climate disturbance and building deterioration. A sustainable technique that is able to degrade soot using (sun)light is photocatalysis. Currently, research on photocatalytic soot oxidation focusses on large band gap TiO2-based photocatalysts and thus requires the use of UV light. It would prove useful if visible light, and thus a larger fraction of the (freely available) solar spectrum, could additionally be utilised to drive this process. In this work, a visible light-active photocatalyst, WO3, is benchmarked to TiO2 under both UV and visible light. At the same time, the versatility and drastic improvement of a recently introduced digital image-based soot degradation detection method are demonstrated. An additional step correcting for non-soot related catalyst colour changes is applied, resulting in accurate detection and quantification of soot degradation for all studied photocatalysts, even for materials such as WO3 that are inherently coloured. With this study, we aim to broaden the scope of photocatalytic soot oxidation technology to visible light-active photocatalyst. Along with this study, we provide a versatile soot degradation detection methodology based on digital image analysis that is made widely applicable.


Subject(s)
Light , Ultraviolet Rays , Titanium , Oxidation-Reduction , Catalysis
5.
Adv Sci (Weinh) ; 9(27): e2106117, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35900062

ABSTRACT

Hierarchically porous metals possess intriguing high accessibility of matter molecules and unique continuous metallic frameworks, as well as a high level of exposed active atoms. High rates of diffusion and fast energy transfer have been important and challenging goals of hierarchical design and porosity control with nanostructured metals. This review aims to summarize recent important progress toward the development of hierarchically porous metals, with special emphasis on synthetic strategies, hierarchical design in structure-function and corresponding applications. The current challenges and future prospects in this field are also discussed.

6.
Article in English | MEDLINE | ID: mdl-35805301

ABSTRACT

Air quality currently poses a major risk to human health worldwide. Transportation is one of the principal contributors to air pollution due to the quality of exhaust gases. For example, the widely used diesel fuel is a significant source of nitrogen oxides (NOx) and particulate matter (PM). To reduce the content NOx and PM, different oxygenated compounds were mixed into a mineral diesel available at the pump, and their effect on the composition of exhaust gas emissions was measured using a one-cylinder diesel generator. In this setup, adding methanol gave the best relative results. The addition of 2000 ppm of methanol decreased the content of NO by 56%, 2000 ppm of isopropanol decreased NO2 by 50%, and 2000 ppm ethanol decreased PM by 63%. An interesting question is whether it is possible to reduce the impact of hazardous components in the exhaust gas even more by adding oxygenates to biodiesels. In this article, alcohol is added to biodiesel in order to establish the impact on PM and NOx concentrations in the exhaust gases. Adding methanol, ethanol, and isopropanol at concentrations of 2000 ppm and 4000 ppm did not improve NOx emissions. The best results were using pure RME for a low NO content, pure diesel for a low NO2 content, and for PM there were no statistically significant differences.


Subject(s)
Air Pollutants , Particulate Matter , 2-Propanol , Air Pollutants/analysis , Biofuels/analysis , Ethanol , Gasoline/analysis , Humans , Methanol , Mineral Oil , Nitrogen Dioxide , Nitrogen Oxides/analysis , Particulate Matter/analysis , Vehicle Emissions/analysis
7.
Sci China Mater ; 65(10): 2685-2693, 2022.
Article in English | MEDLINE | ID: mdl-35668742

ABSTRACT

Rational composition design of trimetallic phosphide catalysts is of significant importance for enhanced surface reaction and efficient catalytic performance. Herein, hierarchical Co x Ni y Fe z P with precise control of stoichiometric metallic elements (x:y:z = (1-10):(1-10):1) has been synthesized, and Co1.3Ni0.5Fe0.2P, as the most optimal composition, exhibits remarkable catalytic activity (η = 320 mV at 10 mA cm-2) and long-term stability (ignorable decrease after 10 h continuous test at the current density of 10 mA cm-2) toward oxygen evolution reaction (OER). It is found that the surface P in Co1.3Ni0.5Fe0.2P was replaced by O under the OER process. The density function theory calculations before and after long-term stability tests suggest the clear increasing of the density of states near the Fermi level of Co1.3Ni0.5Fe0.2P/Co1.3Ni0.5Fe0.2O, which could enhance the OH- adsorption of our electrocatalysts and the corresponding OER performance. Electronic Supplementary Material: Supplementary material is available in the online version of this article at 10.1007/s40843-022-2061-x.

8.
Nanomaterials (Basel) ; 11(10)2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34685070

ABSTRACT

To broaden the activity window of TiO2, a broadband plasmonic photocatalyst has been designed and optimized. This plasmonic 'rainbow' photocatalyst consists of TiO2 modified with gold-silver composite nanoparticles of various sizes and compositions, thus inducing a broadband interaction with polychromatic solar light. However, these nanoparticles are inherently unstable, especially due to the use of silver. Hence, in this study the application of the layer-by-layer technique is introduced to create a protective polymer shell around the metal cores with a very high degree of control. Various TiO2 species (pure anatase, PC500, and P25) were loaded with different plasmonic metal loadings (0-2 wt %) in order to identify the most solar active composite materials. The prepared plasmonic photocatalysts were tested towards stearic acid degradation under simulated sunlight. From all materials tested, P25 + 2 wt % of plasmonic 'rainbow' nanoparticles proved to be the most promising (56% more efficient compared to pristine P25) and was also identified as the most cost-effective. Further, 2 wt % of layer-by-layer-stabilized 'rainbow' nanoparticles were loaded on P25. These layer-by-layer-stabilized metals showed superior stability under a heated oxidative atmosphere, as well as in a salt solution. Finally, the activity of the composite was almost completely retained after 1 month of aging, while the nonstabilized equivalent lost 34% of its initial activity. This work shows for the first time the synergetic application of a plasmonic 'rainbow' concept and the layer-by-layer stabilization technique, resulting in a promising solar active, and long-term stable photocatalyst.

9.
Chemistry ; 27(35): 9011-9021, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-33880788

ABSTRACT

The functionalization of photocatalytic metal oxide nanoparticles of TiO2 , ZnO, WO3 and CuO with amine-terminated (oleylamine) and thiol-terminated (dodecane-1-thiol) alkyl-chain ligands was studied under ambient conditions. A high selectivity was observed in the binding specificity of a ligand towards nanoparticles of these different oxides. It was observed that oleylamine binds stably to only TiO2 and WO3 , whereas dodecane-1-thiol binds stably only to ZnO and CuO. Similarly, polar-to-nonpolar solvent phase transfer of TiO2 and WO3 nanoparticles could be achieved by using oleylamine, but not dodecane-1-thiol, whereas the opposite holds for ZnO and CuO. The surface chemistry of ligand-functionalized nanoparticles was probed by attenuated total reflectance (ATR)-FTIR spectroscopy, which enabled the occupation of the ligands at the active sites to be elucidated. The photostability of the ligands on the nanoparticle surface was determined by the photocatalytic self-cleaning properties of the material. Although TiO2 and WO3 degrade the ligands within 24 h under both UV and visible light, ligands on ZnO and CuO remain unaffected. The gathered insights are also highly relevant from an application point of view. As an example, because the ligand-functionalized nanoparticles are hydrophobic in nature, they can be self-assembled at the air-water interface to give nanoparticle films with demonstrated photocatalytic as well as anti-fogging properties.

10.
Nanoscale ; 12(15): 8364-8370, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32239025

ABSTRACT

The interfacial co-existence of oxygen and metal vacancies in metal oxide semiconductors and their highly efficient carrier transport have rarely been reported. This work reports on the co-existence of oxygen and titanium vacancies at the interface between TiO2 and rGO via a simple two-step calcination treatment. Experimental measurements show that the oxygen and titanium vacancies are formed under 550 °C/Ar and 350 °C/air calcination conditions, respectively. These oxygen and titanium vacancies significantly enhance the transport of interfacial carriers, and thus greatly improve the photocurrent performances, the apparent quantum yield, and photocatalysis such as photocatalytic H2 production from water-splitting, photocatalytic CO2 reduction and photo-electrochemical anticorrosion of metals. A new "interfacial co-existence of oxygen and titanium vacancies" phenomenon, and its characteristics and mechanism are proposed at the atomic-/nanoscale to clarify the generation of oxygen and titanium vacancies as well as the interfacial carrier transport.

11.
Sci Total Environ ; 712: 135534, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-31791747

ABSTRACT

As real-life experimental data on natural ventilation of atmospheric pollution levels in urban street canyons is still scarce and has proven to be complex, this study, experimentally evaluated the impact of an urban street canyon opening on local atmospheric pollution levels, during a 2-week field campaign in a typical urban street canyon in Antwerp, Belgium. Besides following up on atmospheric particulate matter (PM), ultrafine particles (UFPs) and black carbon (BC) levels, the magneto-chemical PM10 composition was quantified to identify contributions of specific elements in enclosed versus open street canyon sections. Results indicated no higher overall PM, UFP and BC concentrations at the enclosed site compared to the open site, but significant day-to-day variability between both monitoring locations, depending on the experienced wind conditions. On days with oblique wind regimes (4 out of 14), natural ventilation was observed at the open location while higher element contributions of Ca, Fe, Co, Ni, Cu, Zn and Sr were exhibited at the enclosed location. Magnetic properties correlated with the PM10 filter loading, and elemental content of Fe, Cr, Mn and Ti. Magnetic bivariate ratios identified finel-grained magnetite carriers with grain sizes below 0.1 µm, indicating similar magnetic source contributions at both monitoring locations. Our holistic approach, combining atmospheric monitoring with magneto-chemical PM characterization has shown the complex impact of real-life wind flow regimes, different source contributions and local traffic dynamics on the resulting pollutant concentrations and contribute to a better understanding on the urban ventilation processes of atmospheric pollution.

12.
Small ; 15(42): e1902791, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31448568

ABSTRACT

For the synthesis of gold-silver bimetallic nanoparticles, the Turkevich method has been the state-of-the-art method for several decades. It is presumed that this procedure results in a homogeneous alloy, although this has been debatable for many years. In this work, it is shown that neither a full alloy, nor a perfect core-shell particle is formed but rather a core-shell-like particle with altering metal composition along the radial direction. In-depth wet-chemical experiments are performed in combination with advanced transmission electron microscopy, including energy-dispersive X-ray tomography, and finite element method modeling to support the observations. From the electron tomography results, the core-shell structure can be clearly visualized and the spatial distribution of gold and silver atoms can be quantified. Theoretical simulations are performed to demonstrate that even though UV-vis spectra show only one plasmon band, this still originates from core-shell type structures. The simulations also indicate that the core-shell morphology does not so much affect the location of the plasmon band, but mainly results in significant band broadening. Wet-chemistry experiments provide the evidence that the synthesis pathway starts with gold enriched alloy cores, and later on in the synthesis mainly silver is incorporated to end up with a silver enriched alloy shell.

13.
Chemistry ; 24(50): 13246-13252, 2018 Sep 06.
Article in English | MEDLINE | ID: mdl-29926980

ABSTRACT

Hierarchically dual-mesoporous TiO2 microspheres have been synthesized by a solvothermal process in the presence of 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4 ]) and diethylenetriamine (DETA) as co-templates. Secondary mesostructured defects in the hierarchical TiO2 microspheres produce oxygen vacancies, which not only significantly enhance photocatalytic activity in the degradation of methylene blue (1.7 times that with P25) and acetone (2.9 times that with P25), but are also beneficial for lithium storage. Moreover, we propose a mechanism to rationalize the role of this dual mesoporosity of the TiO2 microspheres in enhancing molecular diffusion, ion transportation, and electronic transitions.

14.
Nanoscale ; 10(19): 9186-9191, 2018 May 17.
Article in English | MEDLINE | ID: mdl-29726570

ABSTRACT

Silver-polymer core-shell nanoparticles show interesting optical properties, making them widely applicable in the field of plasmonics. The uniformity, thickness and homogeneity of the polymer shell will affect the properties of the system which makes a thorough structural characterization of these core-shell silver-polymer nanoparticles of great importance. However, visualizing the shell and the particle simultaneously is far from straightforward due to the sensitivity of the polymer shell towards the electron beam. In this study, we use different 2D and 3D electron microscopy techniques to investigate different structural aspects of the polymer coating.

15.
Chem Asian J ; 13(12): 1609-1615, 2018 Jun 18.
Article in English | MEDLINE | ID: mdl-29635796

ABSTRACT

Hierarchical MoS2 @TiO2 heterojunctions were synthesized through a one-step hydrothermal method by using protonic titanate nanosheets as the precursor. The TiO2 nanosheets prevent the aggregation of MoS2 and promote the carrier transfer efficiency, and thus enhance the photocatalytic and electrocatalytic activity of the nanostructured MoS2 . The obtained MoS2 @TiO2 has significantly enhanced photocatalytic activity in the degradation of rhodamine B (over 5.2 times compared with pure MoS2 ) and acetone (over 2.8 times compared with pure MoS2 ). MoS2 @TiO2 is also beneficial for electrocatalytic hydrogen evolution (26 times compared with pure MoS2 , based on the cathodic current density). This work offers a promising way to prevent the self-aggregation of MoS2 and provides a new insight for the design of heterojunctions for materials with lattice mismatches.

16.
Environ Res ; 164: 530-538, 2018 07.
Article in English | MEDLINE | ID: mdl-29626819

ABSTRACT

Urban environments typically exhibit large atmospheric pollution variation, in both space and time. In contrast to traditional monitoring networks suffering from a limited spatial coverage, mobile platforms enable personalized high-resolution monitoring, providing valuable insights into personal atmospheric pollution exposure, and the identification of potential pollution hotspots. This study evaluated personal cyclist exposure to UFPs, BC and heavy metals whilst commuting near Antwerp, Belgium, by performing mobile measurements with wearable black carbon (BC) and ultrafine particle (UFP) instruments. Loaded micro-aethalometer filterstrips were chemically analysed and the inhaled pollutant dose determined from the exhibited heart rate. Considerable spatial pollutant variation was observed along the travelled routes, with distinct contributions from spatial factors (e.g. traffic intersections, urban park and market) and temporary events. On average 300% higher BC, 20% higher UFP and changing elemental concentrations are observed along the road traffic route (RT), when compared to the bicycle highway route (BH). Although the overall background pollution determines a large portion of the experienced personal exposure (in this case 53% for BC and 40% for UFP), cyclists can influence their personal atmospheric pollution exposure, by selecting less exposed commuting routes. Our results, hereby, strengthen the body of evidence in favour of further policy investments in isolated bicycle infrastructure.


Subject(s)
Air Pollutants , Air Pollution , Metals, Heavy , Air Pollutants/analysis , Belgium , Carbon , Particulate Matter/analysis , Transportation
17.
Environ Sci Pollut Res Int ; 25(18): 18015-18026, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29691740

ABSTRACT

This work is focused on an in-depth experimental characterization of multi-tube reactors for indoor air purification integrated in ventilation systems. Glass tubes were selected as an excellent photocatalyst substrate to meet the challenging requirements of the operating conditions in a ventilation system in which high flow rates are typical. Glass tubes show a low-pressure drop which reduces the energy demand of the ventilator, and additionally, they provide a large exposed surface area to allow interaction between indoor air contaminants and the photocatalyst. Furthermore, the performance of a range of P25-loaded sol-gel coatings was investigated, based on their adhesion properties and photocatalytic activities. Moreover, the UV light transmission and photocatalytic reactor performance under various operating conditions were studied. These results provide vital insights for the further development and scaling up of multi-tube reactors in ventilation systems which can provide a better comfort, improved air quality in indoor environments, and reduced human exposure to harmful pollutants.


Subject(s)
Air Pollutants/chemistry , Air Pollution, Indoor/analysis , Air Conditioning , Feasibility Studies , Humans , Ultraviolet Rays
18.
J Biotechnol ; 270: 70-76, 2018 Mar 20.
Article in English | MEDLINE | ID: mdl-29428225

ABSTRACT

Enzyme cost is considered to be one of the most significant factors defining the final product price in lignocellulose hydrolysis and fermentation. Enzyme immobilization and recycling can be a tool to decrease costs. However, high solid loading is a key factor towards high product titers, and recovery of immobilized enzymes from this thick liquid is often overlooked. This paper aims to evaluate the economic feasibility of immobilized enzymes in simultaneous saccharification and fermentation (SSF) of lignocellulose biomass in general, as well as the recuperation of magnetic immobilized enzymes (m-CLEAs) during high solid loading in simultaneous saccharification, detoxification and fermentation processes (SSDF) of lignocellulose biomass. Enzyme prices were obtained from general cost estimations by Klein-Marcuschamer et al. [Klein-Marcuschamer et al. (2012) Biotechnol. Bioeng. 109, 1083-1087]. During enzyme cost analysis, the influence of inoculum recirculation as well as a shortened fermentation time was explored. Both resulted in 15% decrease of final enzyme product price. Enzyme recuperation was investigated experimentally and 99.5 m/m% of m-CLEAs was recovered from liquid medium in one step, while 88 m/m% could still be recycled from a thick liquid with high solid concentrations (SSF fermentation broth). A mathematical model was constructed to calculate the cost of immobilized and free enzyme utilization and showed that, with current process efficiencies and commercial enzyme prices, the cost reduction obtained by enzyme immobilization can reach around 60% compared to free enzyme utilization, while lower enzyme prices will result in a lower percentage of immobilization related savings, but overall enzyme costs will decrease significantly. These results are applied in a case study, estimating the viability of shifting from sugar to lignocellulose substrate for a 100 t lactic acid fermentation batch. It was concluded that it will only be economically feasible if the enzymes are produced at the most optimistic variable cost and either the activity of the immobilized catalyst or the recovery efficiency is further increased.


Subject(s)
Enzymes, Immobilized/economics , Lignin/chemistry , Cost-Benefit Analysis , Fermentation , Hydrolysis , Sucrose/chemistry
19.
ACS Appl Mater Interfaces ; 9(47): 41577-41585, 2017 Nov 29.
Article in English | MEDLINE | ID: mdl-29119785

ABSTRACT

Silver nanoparticles are widely used in the field of plasmonics because of their unique optical properties. The wavelength-dependent surface plasmon resonance gives rise to a strongly enhanced electromagnetic field, especially at so-called hot spots located in the nanogap in-between metal nanoparticle assemblies. Therefore, the interparticle distance is a decisive factor in plasmonic applications, such as surface-enhanced Raman spectroscopy (SERS). In this study, the aim is to engineer this interparticle distance for silver nanospheres using a convenient wet-chemical approach and to predict and quantify the corresponding enhancement factor using both theoretical and experimental tools. This was done by building a tunable ultrathin polymer shell around the nanoparticles using the layer-by-layer method, in which the polymer shell acts as the separating interparticle spacer layer. Comparison of different theoretical approaches and corroborating the results with SERS analytical experiments using silver and silver-polymer core-shell nanoparticle clusters as SERS substrates was also done. Herewith, an approach is provided to estimate the extent of plasmonic near-field enhancement both theoretically as well as experimentally.

20.
ChemSusChem ; 10(7): 1413-1418, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28177581

ABSTRACT

The concept of an all-gas-phase photoelectrochemical (PEC) cell producing hydrogen gas from volatile organic contaminated gas and light is presented. Without applying any external bias, organic contaminants are degraded and hydrogen gas is produced in separate electrode compartments. The system works most efficiently with organic pollutants in inert carrier gas. In the presence of oxygen, the cell performs less efficiently but still significant photocurrents are generated, showing the cell can be run on organic contaminated air. The purpose of this study is to demonstrate new application opportunities of PEC technology and to encourage further advancement toward PEC remediation of air pollution with the attractive feature of simultaneous energy recovery and pollution abatement.


Subject(s)
Air Pollutants/chemistry , Electric Power Supplies , Hydrogen/chemistry , Solar Energy , Electrochemistry , Volatilization , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL