Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Obes (Lond) ; 34(6): 1001-10, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20065959

ABSTRACT

OBJECTIVE: To test the hypothesis that micro-opioid receptor signaling in the nucleus accumbens contributes to hedonic (over)eating and obesity. To investigate the effects of chronic micro-opioid antagonism in the nucleus accumbens core or shell on intake of a palatable diet, and the development of diet-induced obesity in rats. METHODS AND DESIGN: Chronic blockade of micro-opioid receptor signaling in the nucleus accumbens core or shell was achieved by means of repeated injections (every 4-5 days) of the irreversible receptor antagonist beta-funaltrexamine (BFNA) over 3-5 weeks. The diet consisted of either a choice of high-fat chow, chocolate-flavored Ensure and regular chow (each nutritionally complete) or regular chow only. Intake of each food item, body weight and body fat mass were monitored throughout the study. RESULTS: The BFNA injections aimed at either the core or shell of the nucleus accumbens resulted in significantly attenuated intake of palatable diet, body weight gain and fat accretion, compared with vehicle control injections. The injection of BFNA in the core did not significantly change these parameters in chow-fed control rats. The injection of BFNA in the core and shell differentially affected intake of the two palatable food items: in the core, BFNA significantly reduced the intake of high-fat, but not of Ensure, whereas in the shell, it significantly reduced the intake of Ensure, but not of high-fat, compared with vehicle treatment. CONCLUSIONS: Endogenous micro-opioid receptor signaling in the nucleus accumbens core and shell is necessary for palatable diet-induced hyperphagia and obesity to fully develop in rats. Sweet and non-sweet fatty foods may be differentially processed in subcomponents of the ventral striatum.


Subject(s)
Body Weight/drug effects , Food Preferences/drug effects , Nucleus Accumbens/drug effects , Obesity/prevention & control , Receptors, Opioid, mu/antagonists & inhibitors , Animals , Body Weight/physiology , Dietary Fats/administration & dosage , Dietary Sucrose/administration & dosage , Food Preferences/psychology , Food, Formulated , Male , Naltrexone/administration & dosage , Naltrexone/analogs & derivatives , Naltrexone/pharmacology , Narcotic Antagonists/administration & dosage , Narcotic Antagonists/pharmacology , Nucleus Accumbens/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Opioid, mu/physiology
2.
Int J Obes (Lond) ; 33 Suppl 2: S8-13, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19528982

ABSTRACT

Powerful biological mechanisms evolved to defend adequate nutrient supply and optimal levels of body weight/adiposity. Low levels of leptin indicating food deprivation and depleted fat stores have been identified as the strongest signals to induce adaptive biological actions such as increased energy intake and reduced energy expenditure. In concert with other signals from the gut and metabolically active tissues, low leptin levels trigger powerful activation of multiple peripheral and brain systems to restore energy balance. It is not just neurons in the arcuate nucleus, but many other brain systems involved in finding potential food sources, smelling and tasting food, and learning to maximize rewarding effects of foods, that are affected by low leptin. Food restriction and fat depletion thus lead to a 'hungry' brain, preoccupied with food. By contrast, because of less (adaptive thrifty fuel efficiency) or lost (lack of predators) evolutionary pressure, the upper limits of body weight/adiposity are not as strongly defended by high levels of leptin and other signals. The modern environment is characterized by the increased availability of large amounts of energy-dense foods and increased presence of powerful food cues, together with minimal physical procurement costs and a sedentary lifestyle. Much of these environmental influences affect cortico-limbic brain areas concerned with learning and memory, reward, mood and emotion. Common obesity results when individual predisposition to deal with a restrictive environment, as engraved by genetics, epigenetics and/or early life experience, is confronted with an environment of plenty. Therefore, increased adiposity in prone individuals should be seen as a normal physiological response to a changed environment, not in the pathology of the regulatory system. The first line of defense should ideally lie in modifications to the environment and lifestyle. However, as such modifications will be slow and incomplete, it is equally important to gain better insight into how the brain deals with environmental stimuli and to develop behavioral strategies to better cope with them. Clearly, alternative therapeutic strategies such as drugs and bariatric surgery should also be considered to prevent or treat this debilitating disease. It will be crucial to understand the functional crosstalk between neural systems responding to metabolic and environmental stimuli, i.e. crosstalk between hypothalamic and cortico-limbic circuitry.


Subject(s)
Appetite Regulation/physiology , Hypothalamus/metabolism , Leptin/physiology , Neural Pathways/physiology , Obesity/physiopathology , Satiety Response/physiology , Adiposity/physiology , Energy Intake/physiology , Energy Metabolism/physiology , Feeding Behavior , Homeostasis/physiology , Humans , Limbic System/physiology , Obesity/psychology
SELECTION OF CITATIONS
SEARCH DETAIL
...