Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Methods ; 16(21): 3337-3348, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38738371

ABSTRACT

Despite the increasing efforts in improving bone health assessments, current diagnostics suffer from critical shortcomings. The present article therefore describes a multiplex label-free immunosensor designed and validated for the assessment of two bone turnover markers (BTMs), namely beta isomerized C-terminal telopeptide of type I collagen (CTx) and Procollagen I Intact N-Terminal (PINP), the combination of which is needed to illustrate an accurate overview of bone health. The immunosensor was then tested outside and inside of a microsystem, with the aim of becoming compatible with a point of care system fabricated for automated assessment of these biomarkers later-on at patient side. Custom-made monoclonal antibodies were specifically designed for this purpose in order to guarantee the selectivity of the immunosensor. In the final platform, a finger prick blood sample is introduced into the microfluidic manifolds without any need for sample preparation step, making the tool suitable for near patient and outside of the central laboratory applications. The platform was exploited in 30 real blood samples with the results validated using electrochemiluminescence immunoassay. The results revealed the platform was capable of measuring the target analyte with high sensitivity and beyond the recommended clinical reference range for each biomarker (CTx: 104-1028 ng L-1 and PINP: 16-96 µg L-1, correspondingly). They also showed the platform to have a limit of detection of 15 (ng L-1) and 0.66 (µg L-1), a limit of quantification of 49 (ng L-1) and 2.21 (µg L-1), and an inter- and intra-assay coefficient of variance of 5.39-6.97% and 6.81-5.37%, for CTx and PINP respectively, which is comparable with the gold standard. The main advantage of the platform over the state-of-the art was the capability of providing the results for two markers recommended for assessing bone health within 15 minutes and without the need for skilled personnel or costly infrastructure.


Subject(s)
Biomarkers , Bone Remodeling , Collagen Type I , Peptide Fragments , Procollagen , Humans , Biomarkers/blood , Biomarkers/analysis , Procollagen/blood , Collagen Type I/blood , Bone Remodeling/physiology , Peptide Fragments/blood , Immunoassay/methods , Peptides/blood , Biosensing Techniques/methods , Point-of-Care Systems
2.
ACS Cent Sci ; 9(8): 1591-1602, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37637735

ABSTRACT

Osteoporosis is a multifactorial disease influenced by genetic and environmental factors, which contributes to an increased risk of bone fracture, but early diagnosis of this disease cannot be achieved using current techniques. We describe a generic platform for the targeted electrochemical genotyping of SNPs identified by genome-wide association studies to be associated with a genetic predisposition to osteoporosis. The platform exploits isothermal solid-phase primer elongation with ferrocene-labeled nucleoside triphosphates. Thiolated reverse primers designed for each SNP were immobilized on individual gold electrodes of an array. These primers are designed to hybridize to the SNP site at their 3'OH terminal, and primer elongation occurs only where there is 100% complementarity, facilitating the identification and heterozygosity of each SNP under interrogation. The platform was applied to real blood samples, which were thermally lysed and directly used without the need for DNA extraction or purification. The results were validated using Taqman SNP genotyping assays and Sanger sequencing. The assay is complete in just 15 min with a total cost of 0.3€ per electrode. The platform is completely generic and has immense potential for deployment at the point of need in an automated device for targeted SNP genotyping with the only required end-user intervention being sample addition.

SELECTION OF CITATIONS
SEARCH DETAIL
...