Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Protoplasma ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849663

ABSTRACT

One of the first cellular locations of the calreticulin (CRT) chaperone in eukaryotic cells, apart from its obvious localization in the endoplasmic reticulum (ER), was the cell nucleus (Opas et al. 1991). The presence of CRT has been detected inside the nucleus and in the nuclear envelope of animal and plant cells, and a putative nuclear localization signal (NLS) in the CRT amino acid sequence has been mapped in several animal and plant species. Over the last 30 years, other localization sites of this protein outside the ER and cell nucleus have also been discovered, suggesting that CRT is a multifunctional Ca2+-binding protein widely found in various cell types. In our previous studies focusing on plant developmental biology, we have demonstrated the presence of CRT inside and outside the ER in highly specialized plant cells, as well as the possibility of CRT localization in the cell nucleus. In this paper, we present a detailed analysis of immunocytochemical localization of CRT inside nuclei of the pistil transmission tract somatic cells before and after pollination. We show a similar pattern of the nuclear CRT localization in relation to exchangeable Ca2+ for two selected species of angiosperms, dicotyledonous Petunia and monocot Haemanthus, that differ in anatomical structure of the pistil and discuss the potential role of CRT in the cell nucleus.

2.
Front Physiol ; 15: 1368416, 2024.
Article in English | MEDLINE | ID: mdl-38774650

ABSTRACT

We have previously shown that unconventional myosin VI (MVI), a unique actin-based motor protein, shuttles between the cytoplasm and nucleus in neurosecretory PC12 cells in a stimulation-dependent manner and interacts with numerous proteins involved in nuclear processes. Among the identified potential MVI partners was nucleolin, a major nucleolar protein implicated in rRNA processing and ribosome assembly. Several other nucleolar proteins such as fibrillarin, UBF (upstream binding factor), and B23 (also termed nucleophosmin) have been shown to interact with MVI. A bioinformatics tool predicted the presence of the nucleolar localization signal (NoLS) within the MVI globular tail domain, and immunostaining confirmed the presence of MVI within the nucleolus. Depletion of MVI, previously shown to impair PC12 cell proliferation and motility, caused disorganization of the nucleolus and rough endoplasmic reticulum (rER). However, lack of MVI does not affect nucleolar transcription. In light of these data, we propose that MVI is important for nucleolar and ribosome maintenance but not for RNA polymerase 1-related transcription.

3.
Int J Mol Sci ; 23(9)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35563382

ABSTRACT

Pollen tube growth depends on several complex processes, including exo/endocytosis, cell wall biogenesis, intracellular transport, and cell signaling. Our previous results provided evidence that calreticulin (CRT)-a prominent calcium (Ca2+)-buffering molecular chaperone in the endoplasmic reticulum (ER) lumen-is involved in pollen tube formation and function. We previously cloned and characterized the CRT gene belonging to the CRT1/2 subgroup from Petunia hybrida (PhCRT1/2), and found that post-transcriptional silencing of PhCRT1/2 expression strongly impaired pollen tube growth in vitro. Here, we report cloning of a new PhCRT3a homolog; we identified the full-length cDNA sequence and described its molecular characteristics and phylogenetic relationships to other plant CRT3 genes. Using an RNA interference (RNAi) strategy, we found that knockdown of PhCRT3a gene expression caused numerous defects in the morphology and ultrastructure of cultivated pollen tubes, including disorganization of the actin cytoskeleton and loss of cytoplasmic zonation. Elongation of siPhCRT3a pollen tubes was disrupted, and some of them ruptured. Our present data provide the first evidence that PhCRT3a expression is required for normal pollen tube growth. Thus, we discuss relationships between diverse CRT isoforms in several interdependent processes driving the apical growth of the pollen tube, including actomyosin-dependent cytoplasmic streaming, organelle positioning, vesicle trafficking, and cell wall biogenesis.


Subject(s)
Petunia , Actins/metabolism , Endoplasmic Reticulum/metabolism , Petunia/genetics , Petunia/metabolism , Phylogeny , Pollen Tube , RNA Interference
4.
Int J Mol Sci ; 23(6)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35328431

ABSTRACT

A useful model for determining the mechanisms by which actin and actin binding proteins control cellular architecture is the Drosophila melanogaster process of spermatogenesis. During the final step of spermatogenesis, 64 syncytial spermatids individualized as stable actin cones move synchronously down the axonemes and remodel the membranes. To identify new genes involved in spermatid individualization, we screened a collection of Drosophila male-sterile mutants and found that, in the line Z3-5009, actin cones formed near to the spermatid nuclei but failed to move, resulting in failed spermatid individualization. However, we show by phalloidin actin staining, electron microscopy and immunocytochemical localization of several actin binding proteins that the early cones had normal structure. We sequenced the genome of the Z3-5009 line and identified mutations in the PFTAIRE kinase L63 interactor 1A (Pif1A) gene. Quantitative real-time PCR showed that Pif1A transcript abundance was decreased in the mutant, and a transgene expressing Pif1A fused to green fluorescent protein (GFP) was able to fully rescue spermatid individualization and male fertility. Pif1A-GFP localized to the front of actin cones before initiation of movement. We propose that Pif1A plays a pivotal role in directing actin cone movement.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Actins/genetics , Actins/metabolism , Animals , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Male , Spermatids/metabolism , Spermatogenesis/genetics , Testis/metabolism
5.
BMC Plant Biol ; 22(1): 24, 2022 Jan 08.
Article in English | MEDLINE | ID: mdl-34998378

ABSTRACT

BACKGROUND: Pollen development in the anther in angiosperms depends on complicated cellular interactions associated with the expression of gametophytic and sporophytic genes which control fundamental processes during microsporo/gametogenesis, such as exo/endocytosis, intracellular transport, cell signaling, chromatin remodeling, and cell division. Most if not all of these cellular processes depend of local concentration of calcium ions (Ca2+). Work from our laboratory and others provide evidence that calreticulin (CRT), a prominent Ca2+-binding/buffering protein in the endoplasmic reticulum (ER) of eukaryotic cells, may be involved in pollen formation and function. Here, we show for the first time the expression pattern of the PhCRT1 gene and CRT accumulation in relation to exchangeable Ca2+ in Petunia hybrida developing anther, and discuss probable roles for this protein in the male gametophyte development. RESULTS: Using northern hybridization, western blot analysis, fluorescent in situ hybridization (FISH), immunocytochemistry, and potassium antimonate precipitation, we report that PhCRT1 is highly expressed in the anther and localization pattern of the CRT protein correlates with loosely bound (exchangeable) Ca2+ during the successive stages of microsporo/gametogenesis. We confirmed a permanent presence of both CRT and exchangeable Ca2+ in the germ line and tapetal cells, where these factors preferentially localized to the ER which is known to be the most effective intracellular Ca2+ store in eukaryotic cells. In addition, our immunoblots revealed a gradual increase in CRT level from the microsporocyte stage through the meiosis and the highest CRT level at the microspore stage, when both microspores and tapetal cells show extremely high secretory activity correlated with the biogenesis of the sporoderm. CONCLUSION: Our present data provide support for a key role of CRT in developing anther of angiosperms - regulation of Ca2+ homeostasis during pollen grains formation. This Ca2+-buffering chaperone seems to be essential for pollen development and maturation since a high rate of protein synthesis and protein folding within the ER as well as intracellular Ca2+ homeostasis are strictly required during the multi-step process of pollen development.


Subject(s)
Calcium/metabolism , Calreticulin/genetics , Calreticulin/metabolism , Petunia/growth & development , Petunia/genetics , Pollen Tube/growth & development , Pollen Tube/genetics , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Petunia/metabolism , Pollen Tube/metabolism
6.
Histochem Cell Biol ; 155(3): 323-340, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33386429

ABSTRACT

Spermiogenesis is the final stage of spermatogenesis, a differentiation process during which unpolarized spermatids undergo excessive remodeling that results in the formation of sperm. The actin cytoskeleton and associated actin-binding proteins play crucial roles during this process regulating organelle or vesicle delivery/segregation and forming unique testicular structures involved in spermatid remodeling. In addition, several myosin motor proteins including MYO6 generate force and movement during sperm differentiation. MYO6 is highly unusual as it moves towards the minus end of actin filaments in the opposite direction to other myosin motors. This specialized feature of MYO6 may explain the many proposed functions of this myosin in a wide array of cellular processes in animal cells, including endocytosis, secretion, stabilization of the Golgi complex, and regulation of actin dynamics. These diverse roles of MYO6 are mediated by a range of specialized cargo-adaptor proteins that link this myosin to distinct cellular compartments and processes. During sperm development in a number of different organisms, MYO6 carries out pivotal functions. In Drosophila, the MYO6 ortholog regulates actin reorganization during spermatid individualization and male KO flies are sterile. In C. elegans, the MYO6 ortholog mediates asymmetric segregation of cytosolic material and spermatid budding through cytokinesis, whereas in mice, this myosin regulates assembly of highly specialized actin-rich structures and formation of membrane compartments to allow the formation of fully differentiated sperm. In this review, we will present an overview and compare the diverse function of MYO6 in the specialized adaptations of spermiogenesis in flies, worms, and mammals.


Subject(s)
Myosin Heavy Chains/metabolism , Spermatogenesis , Animals , Mice
7.
Biol Reprod ; 103(3): 521-533, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32412041

ABSTRACT

During spermiogenesis in mammals, actin filaments and a variety of actin-binding proteins are involved in the formation and function of highly specialized testis-specific structures. Actin-based motor proteins, such as myosin Va and VIIa, play a key role in this complex process of spermatid transformation into mature sperm. We have previously demonstrated that myosin VI (MYO6) is also expressed in mouse testes. It is present in actin-rich structures important for spermatid development, including one of the earliest events in spermiogenesis-acrosome formation. Here, we demonstrate using immunofluorescence, cytochemical, and ultrastructural approaches that MYO6 is involved in maintaining the structural integrity of these specialized actin-rich structures during acrosome biogenesis in mouse. We show that MYO6 together with its binding partner TOM1/L2 is present at/around the spermatid Golgi complex and the nascent acrosome. Depletion of MYO6 in Snell's waltzer mice causes structural disruptions of the Golgi complex and affects the acrosomal granule positioning within the developing acrosome. In summary, our results suggest that MYO6 plays an anchoring role during the acrosome biogenesis mainly by tethering of different cargo/membranes to highly specialized actin-related structures.


Subject(s)
Acrosome/metabolism , Acrosome/ultrastructure , Myosin Heavy Chains/biosynthesis , Spermatogenesis/physiology , Acrosome Reaction , Actins/metabolism , Animals , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Mutation , Myosin Heavy Chains/genetics , Sperm Count , Sperm Maturation/genetics , Spermatids
8.
Biol Reprod ; 102(4): 863-875, 2020 04 15.
Article in English | MEDLINE | ID: mdl-31901088

ABSTRACT

Myosin VI (MYO6) is an actin-based motor that has been implicated in a wide range of cellular processes, including endocytosis and the regulation of actin dynamics. MYO6 is crucial for actin/membrane remodeling during the final step of Drosophila spermatogenesis, and MYO6-deficient males are sterile. This protein also localizes to actin-rich structures involved in mouse spermiogenesis. Although loss of MYO6 in Snell's waltzer knock-out (KO) mice causes several defects and shows reduced male fertility, no studies have been published to address the role of MYO6 in sperm development in mouse. Here we demonstrate that MYO6 and some of its binding partners are present at highly specialized actin-based structures, the apical tubulobulbar complexes (TBCs), which mediate endocytosis of the intercellular junctions at the Sertoli cell-spermatid interface, an essential process for sperm release. Using electron and light microscopy and biochemical approaches, we show that MYO6, GIPC1 and TOM1/L2 form a complex in testis and localize predominantly to an early endocytic APPL1-positive compartment of the TBCs that is distinct from EEA1-positive early endosomes. These proteins also associate with the TBC actin-free bulbular region. Finally, our studies using testis from Snell's waltzer males show that loss of MYO6 causes disruption of the actin cytoskeleton and disorganization of the TBCs and leads to defects in the distribution of the MYO6-positive early APPL1-endosomes. Taken together, we report here for the first time that lack of MYO6 in mouse testis reduces male fertility and disrupts spatial organization of the TBC-related endocytic compartment during the late phase of spermiogenesis.


Subject(s)
Actins/metabolism , Endocytosis/physiology , Infertility, Male/genetics , Myosin Heavy Chains/genetics , Spermatogenesis/genetics , Actin Cytoskeleton/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Infertility, Male/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mice , Mice, Knockout , Myosin Heavy Chains/metabolism
9.
Mol Phylogenet Evol ; 134: 99-110, 2019 05.
Article in English | MEDLINE | ID: mdl-30711535

ABSTRACT

Calreticulin (CRT) is an multifunctional resident endoplasmic reticulum (ER) luminal protein implicated in regulating a variety of cellular processes, including Ca2+ storage/mobilization and protein folding. These multiple functions may be carried out by different CRT genes and protein isoforms. The plant CRT family consist of three genes: CRT1 and CRT2 classified in the common subclass (CRT1/2), and CRT3. These genes are highly conserved during evolution and encode three different protein products (CRT1, 2 and 3). The aim of the current study was to conduct a comparative analysis and sequence-based classification of the plant CRT genes. We used nucleotide and amino acid sequences to phylogenetically cluster the genes and examine potential glycosylation patterns. Additionally, we analyzed phylogenetic relationships within the CRT subclasses. Finally, we analyzed intraspecific CRT duplication events among mono- and dicotyledon species. Our results confirm that each of the CRT genes exist in multiple copies in plant genomes, and that CRT gene duplication is a widespread process in plants.


Subject(s)
Calreticulin/classification , Phylogeny , Plant Proteins/classification , Sequence Homology, Amino Acid , Amino Acid Sequence , Calreticulin/genetics , Plant Proteins/genetics
10.
Nucleus ; 9(1): 125-141, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29293066

ABSTRACT

Myosin VI (MVI) is a unique actin-based motor protein moving towards the minus end of actin filaments, in the opposite direction than other known myosins. Besides well described functions of MVI in endocytosis and maintenance of Golgi apparatus, there are few reports showing its involvement in transcription. We previously demonstrated that in neurosecretory PC12 cells MVI was present in the cytoplasm and nucleus, and its depletion caused substantial inhibition of cell migration and proliferation. Here, we show an increase in nuclear localization of MVI upon cell stimulation, and identification of potential nuclear localization (NLS) and nuclear export (NES) signals within MVI heavy chain. These signals seem to be functional as the MVI nuclear presence was affected by the inhibitors of nuclear import (ivermectin) and export (leptomycin B). In nuclei of stimulated cells, MVI colocalized with active RNA polymerase II, BrUTP-containing transcription sites and transcription factor SP1 as well as SC35 and PML proteins, markers of nuclear speckles and PML bodies, respectively. Mass spectrometry analysis of samples of a GST-pull-down assay with the MVI tail domain as a "bait" identified several new potential MVI binding partners. Among them are proteins involved in transcription and post-transcriptional processes. We confirmed interaction of MVI with heterogeneous nuclear ribonucleoprotein U (hnRNPU) and nucleolin, proteins involved in pre-mRNA binding and transport, and nucleolar function, respectively. Our data provide an insight into mechanisms of involvement of MVI in nuclear processes via interaction with nuclear proteins and support a notion for important role(s) for MVI in gene expression.


Subject(s)
Cell Nucleus/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Myosin Heavy Chains/metabolism , Neurosecretory Systems/metabolism , Phosphoproteins/metabolism , RNA-Binding Proteins/metabolism , Animals , Cell Nucleus/drug effects , Fatty Acids, Unsaturated/pharmacology , Humans , Ivermectin/pharmacology , Myosin Heavy Chains/antagonists & inhibitors , PC12 Cells , Rats , Nucleolin
11.
Protoplasma ; 255(1): 57-67, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28620697

ABSTRACT

Calcium (Ca2+) plays essential roles in generative reproduction of angiosperms, but the sites and mechanisms of Ca2+ storage and mobilization during pollen-pistil interactions have not been fully defined. Both external and internal Ca2+ stores are likely important during male gametophyte communication with the sporophytic and gametophytic cells within the pistil. Given that calreticulin (CRT), a Ca2+-buffering protein, is able to bind Ca2+ reversibly, it can serve as a mobile store of easily releasable Ca2+ (so called an exchangeable Ca2+) in eukaryotic cells. CRT has typical endoplasmic reticulum (ER) targeting and retention signals and resides primarily in the ER. However, localization of this protein outside the ER has also been revealed in both animal and plant cells, including Golgi/dictyosomes, nucleus, plasma membrane/cell surface, plasmodesmata, and even extracellular matrix. These findings indicate that CRT may function in a variety of different cell compartments and specialized structures. We have recently shown that CRT is highly expressed and accumulated in the ER of plant cells involved in pollen-pistil interactions in Petunia, and we proposed an essential role for CRT in intracellular Ca2+ storage and mobilization during the key reproductive events. Here, we demonstrate that both CRT and exchangeable Ca2+ are localized in the intra/extracellular peripheries of highly specialized plant cells, such as the pistil transmitting tract cells, pollen tubes, nucellus cells surrounding the embryo sac, and synergids. Based on our present results, we propose that extracellularly located CRT is also involved in Ca2+ storage and mobilization during sexual reproduction of angiosperms.


Subject(s)
Calcium/metabolism , Calreticulin/metabolism , Flowers/metabolism , Pollen Tube/cytology , Pollen Tube/metabolism , Pollination
12.
Histochem Cell Biol ; 148(4): 445-462, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28500503

ABSTRACT

Myosin VI (MVI) is a versatile actin-based motor protein that has been implicated in a variety of different cellular processes, including endo- and exocytic vesicle trafficking, Golgi morphology, and actin structure stabilization. A role for MVI in crucial actin-based processes involved in sperm maturation was demonstrated in Drosophila. Because of the prominence and importance of actin structures in mammalian spermiogenesis, we investigated whether MVI was associated with actin-mediated maturation events in mammals. Both immunofluorescence and ultrastructural analyses using immunogold labeling showed that MVI was strongly linked with key structures involved in sperm development and maturation. During the early stage of spermiogenesis, MVI is associated with the Golgi and with coated and uncoated vesicles, which fuse to form the acrosome. Later, as the acrosome spreads to form a cap covering the sperm nucleus, MVI is localized to the acroplaxome, an actin-rich structure that anchors the acrosome to the nucleus. Finally, during the elongation/maturation phase, MVI is associated with the actin-rich structures involved in nuclear shaping: the acroplaxome, manchette, and Sertoli cell actin hoops. Since this is the first report of MVI expression and localization during mouse spermiogenesis and MVI partners in developing sperm have not yet been identified, we discuss some probable roles for MVI in this process. During early stages, MVI is hypothesized to play a role in Golgi morphology and function as well as in actin dynamics regulation important for attachment of developing acrosome to the nuclear envelope. Next, the protein might also play anchoring roles to help generate forces needed for spermatid head elongation. Moreover, association of MVI with actin that accumulates in the Sertoli cell ectoplasmic specialization and other actin structures in surrounding cells suggests additional MVI functions in spermatid movement across the seminiferous epithelium and in sperm release.


Subject(s)
Myosin Heavy Chains/analysis , Spermatids/chemistry , Alternative Splicing/genetics , Animals , Genetic Variation/genetics , Immunohistochemistry , Male , Mice , Myosin Heavy Chains/genetics , Spermatids/cytology , Spermatids/growth & development
13.
Planta ; 245(5): 909-926, 2017 May.
Article in English | MEDLINE | ID: mdl-28078426

ABSTRACT

MAIN CONCLUSION: Calreticulin is involved in stabilization of the tip-focused Ca 2+ gradient and the actin cytoskeleton arrangement and function that is required for several key processes driving Petunia pollen tube tip growth. Although the precise mechanism is unclear, stabilization of a tip-focused calcium (Ca2+) gradient seems to be critical for pollen germination and pollen tube growth. We hypothesize that calreticulin (CRT), a Ca2+-binding/buffering chaperone typically residing in the lumen of the endoplasmic reticulum (ER) of eukaryotic cells, is an excellent candidate to fulfill this role. We previously showed that in Petunia pollen tubes growing in vitro, CRT is translated on ER membrane-bound ribosomes that are abundant in the subapical zone of the tube, where CRT's Ca2+-buffering and chaperone activities might be particularly required. Here, we sought to determine the function of CRT using small interfering RNA (siRNA) to, for the first time in pollen tubes growing in vitro, knockdown expression of a gene. We demonstrate that siRNA-mediated post-transcriptional silencing of Petunia hybrida CRT gene (PhCRT) expression strongly impairs pollen tube growth, cytoplasmic zonation, actin cytoskeleton organization, and the tip-focused Ca2+ gradient. Moreover, reduction of CRT alters the localization and disturbs the structure of the ER in abnormally elongating pollen tubes. Finally, cytoplasmic streaming is inhibited, and most of the pollen tubes rupture. Our data clearly show an interplay between CRT, Ca2+ gradient, actin-dependent cytoplasmic streaming, organelle positioning, and vesicle trafficking during pollen tube elongation. Thus, we suggest that CRT functions in Petunia pollen tube growth by stabilizing Ca2+ homeostasis and acting as a chaperone to assure quality control of glycoproteins passing through the ER.


Subject(s)
Calcium/metabolism , Calreticulin/metabolism , Gene Expression Regulation, Plant , Petunia/physiology , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/ultrastructure , Actins/metabolism , Actins/ultrastructure , Calreticulin/genetics , Cytoplasm/metabolism , Cytoplasm/ultrastructure , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Homeostasis , Petunia/genetics , Petunia/growth & development , Petunia/ultrastructure , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen/genetics , Pollen/growth & development , Pollen/physiology , Pollen/ultrastructure , Pollen Tube/genetics , Pollen Tube/growth & development , Pollen Tube/physiology , Pollen Tube/ultrastructure , Pollination , Protein Transport , RNA, Small Interfering
14.
Plant Cell Rep ; 34(12): 2201-15, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26354004

ABSTRACT

KEY MESSAGE: Calreticulin expression is upregulated during sexual reproduction of Hyacinthus orientalis, and the protein is localized both in the cytoplasm and a highly specialized cell wall within the female gametophyte. Several evidences indicate calreticulin (CRT) as an important calcium (Ca(2+))-binding protein that is involved in the generative reproduction of higher plants, including both pre-fertilization and post-fertilization events. Because CRT is able to bind and sequester exchangeable Ca(2+), it can serve as a mobile intracellular store of easily releasable Ca(2+) and control its local cytosolic concentrations in the embryo sac. This phenomenon seems to be essential during the late progamic phase, gamete fusion, and early embryogenesis. In this report, we demonstrate the differential expression of CRT within Hyacinthus female gametophyte cells before and during anthesis, during the late progamic phase when the pollen tube enters the embryo sac, and at the moment of fertilization and zygote/early endosperm activation. CRT mRNA and the protein localize mainly to the endoplasmic reticulum (ER) and Golgi compartments of the cells, which are involved in sexual reproduction events, such as those in sister synergids, the egg cell, the central cell, zygote and the developing endosperm. Additionally, immunogold research demonstrates selective CRT distribution in the filiform apparatus (FA), a highly specific component of the synergid cell wall. In the light of our previous data showing the total transcriptional activity of the Hyacinthus female gametophyte and the results presented here, we discuss the possible functions of CRT with respect to the critical role of Ca(2+) homeostasis during key events of sexual plant reproduction. Moreover, we propose that the elevated expression of CRT within the female gametophyte is a universal phenomenon in the cells involved in double fertilization in higher plants.


Subject(s)
Calcium/metabolism , Calreticulin/metabolism , Gene Expression Regulation, Plant , Hyacinthus/physiology , Calreticulin/genetics , Cell Wall/metabolism , Endoplasmic Reticulum/metabolism , Endosperm/cytology , Endosperm/genetics , Endosperm/physiology , Fertilization , Germ Cells, Plant/cytology , Germ Cells, Plant/physiology , Homeostasis , Hyacinthus/cytology , Hyacinthus/genetics , Pollen Tube/cytology , Pollen Tube/genetics , Pollen Tube/physiology , Pollination , Reproduction , Transcriptional Activation
15.
Plant Cell Rep ; 34(7): 1189-99, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25732863

ABSTRACT

KEY MESSAGE: In germinating pollen grains and growing pollen tubes, CRT is translated on ER membrane-bound ribosomes in the regions where its activity is required for stabilization of tip-focused Ca (2+) gradient. Pollen tube growth requires coordination of signaling, exocytosis, and actin cytoskeletal organization. Many of these processes are thought to be controlled by finely tuned regulation of cytoplasmic Ca(2+) in discrete regions of the tube cytoplasm. Most notably, a mechanism must function to maintain a steep gradient of Ca(2+) that exists at the tip of growing pollen tube. Several pieces of evidence point to calreticulin (CRT) as a key Ca(2+)-binding/-buffering protein involved in pollen germination and pollen tube growth. We previously hypothesized that in germinating pollen and growing tubes, CRT is translated on the ribosomes associated with endoplasmic reticulum (ER) in the regions where its activity might be required. In this report, we have addressed this idea by identifying the sites where CRT mRNA, CRT protein, 18S rRNA, and rough ER are localized in Petunia pollen tubes. We observed all four components in the germinal aperture of pollen grains and in subapical regions of elongating tubes. These results seem to support our idea that CRT is translated on ER membrane-bound ribosomes during pollen germination and pollen tube growth. In elongated pollen tubes, we found CRT mainly localized in the subapical zone, where ER and Golgi stacks are abundant. In eukaryotic cells, these organelles serve as mobile intracellular stores of easily releasable Ca(2+), which can be buffered by proteins such as CRT. Therefore, we postulate that subapical-localized CRT is involved in pollen tube growth by maintaining the stable tip-focused Ca(2+) gradient and thus modulating local Ca(2+) concentration within the tube cytoplasm.


Subject(s)
Calreticulin/metabolism , Endoplasmic Reticulum, Rough/metabolism , Petunia/growth & development , Plant Proteins/metabolism , Pollen Tube/growth & development , Pollen Tube/metabolism , Protein Biosynthesis , Calreticulin/genetics , Endoplasmic Reticulum, Rough/ultrastructure , Gene Expression Regulation, Plant , Germination/genetics , Petunia/genetics , Petunia/metabolism , Petunia/ultrastructure , Plant Proteins/genetics , Pollen Tube/genetics , Pollen Tube/ultrastructure , RNA Transport/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Ribosomal, 18S/genetics
16.
Planta ; 241(1): 209-27, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25262422

ABSTRACT

Calcium (Ca(2+)) plays essential roles in plant sexual reproduction, but the sites and the mechanism of Ca(2+) mobile storage during pollen-pistil interactions have not been fully defined. Because the Ca(2+)-buffering protein calreticulin (CRT) is able to bind and sequester Ca(2+), it can serve as a mobile intracellular store of easily releasable Ca(2+) and control its local concentration within the cytoplasm. Our previous studies showed an enhanced expression of Petunia hybrida CRT gene (PhCRT) during pistil transmitting tract maturation, pollen germination and tube outgrowth on the stigma, gamete fusion, and early embryogenesis. Here, we demonstrate that elevated expression of CRT results in the accumulation of this protein in response to anthesis, pollination, sperm cells deposition within the receptive synergid and fertilization, when the level of exchangeable Ca(2+) changes dynamically. CRT localizes mainly to the endoplasmic reticulum and Golgi compartments in the pistil transmitting tract cells, germinated pollen/tubes, and sporophytic/gametophytic cells of the ovule and corresponds with loosely bound Ca(2+). Additionally, the immunogold research shows, for the first time, highly selective CRT distribution in specific nuclear sub-domains. On the basis of our results, we discuss the possible functions of CRT with respect to the critical role of Ca(2+) homeostasis during key events of the multi-step process of generative reproduction in angiosperms.


Subject(s)
Calcium/metabolism , Calreticulin/metabolism , Flowers/metabolism , Petunia/metabolism , Plant Proteins/metabolism , Blotting, Western , Calreticulin/ultrastructure , Fertilization , Flowers/ultrastructure , Kinetics , Microscopy, Electron, Transmission , Ovule/metabolism , Ovule/ultrastructure , Petunia/ultrastructure , Pollination , Time Factors
17.
Postepy Biochem ; 60(3): 323-32, 2014.
Article in Polish | MEDLINE | ID: mdl-26263762

ABSTRACT

Myosin VI (MVI), an actin-based molecular motor, is believed to have unique functions in eukaryotic cells, because it is the only myosin shown to move toward the pointed end of actin filaments, in the opposite direction of all other myosins. Given some unusual structural and kinetic properties of MVI, many models of its functioning in variety cellular processes have been proposed, and one of them is endocytosis. Different roles for many proteins associated with endocytic domains, such as clathrin or dynamin, have been defined. However, some results provide compelling evidence that actin filaments and MVI are both involved in two distinct steps of clathrin-dependent endocytosis: the formation of clathrin-coated vesicles and the movement of nascent uncoated vesicles from the actin-rich cell periphery to the early endosome. There are several postulated mechanisms of function for actin cytoskeleton and MVI during subsequent steps of clathrin-dependent endocytosis. Below we focus on their potential roles in this cellular process.


Subject(s)
Actin Cytoskeleton/physiology , Clathrin/metabolism , Endocytosis/physiology , Eukaryotic Cells/metabolism , Myosin Heavy Chains/metabolism , Animals , Clathrin-Coated Vesicles/metabolism , Humans , Models, Biological
18.
Planta ; 239(2): 437-54, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24213153

ABSTRACT

Calreticulin (CRT) is a highly conserved and ubiquitously expressed Ca²âº-binding protein in multicellular eukaryotes. As an endoplasmic reticulum-resident protein, CRT plays a key role in many cellular processes including Ca²âº storage and release, protein synthesis, and molecular chaperoning in both animals and plants. CRT has long been suggested to play a role in plant sexual reproduction. To begin to address this possibility, we cloned and characterized the full-length cDNA of a new CRT gene (PhCRT) from Petunia. The deduced amino acid sequence of PhCRT shares homology with other known plant CRTs, and phylogenetic analysis indicates that the PhCRT cDNA clone belongs to the CRT1/CRT2 subclass. Northern blot analysis and fluorescent in situ hybridization were used to assess PhCRT gene expression in different parts of the pistil before pollination, during subsequent stages of the progamic phase, and at fertilization. The highest level of PhCRT mRNA was detected in the stigma-style part of the unpollinated pistil 1 day before anthesis and during the early stage of the progamic phase, when pollen is germinated and tubes outgrow on the stigma. In the ovary, PhCRT mRNA was most abundant after pollination and reached maximum at the late stage of the progamic phase, when pollen tubes grow into the ovules and fertilization occurs. PhCRT mRNA transcripts were seen to accumulate predominantly in transmitting tract cells of maturing and receptive stigma, in germinated pollen/growing tubes, and at the micropylar region of the ovule, where the female gametophyte is located. From these results, we suggest that PhCRT gene expression is up-regulated during secretory activity of the pistil transmitting tract cells, pollen germination and outgrowth of the tubes, and then during gamete fusion and early embryogenesis.


Subject(s)
Calcium/metabolism , Calreticulin/genetics , Gene Expression Regulation, Plant , Petunia/genetics , Amino Acid Sequence , Base Sequence , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Calreticulin/metabolism , DNA, Complementary/chemistry , DNA, Complementary/genetics , DNA, Plant/chemistry , DNA, Plant/genetics , Flowers/cytology , Flowers/genetics , Flowers/physiology , Gene Expression , Homeostasis , Molecular Sequence Data , Petunia/cytology , Petunia/physiology , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen/cytology , Pollen/genetics , Pollen/physiology , Pollination , Protein Structure, Tertiary , Sequence Alignment , Sequence Analysis, DNA
19.
Protoplasma ; 249(2): 337-46, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21573935

ABSTRACT

Stable actin structures play important roles in the development and specialization of differentiated cells. How these structures form, are organized, and are used to mediate physiological processes is not well understood in most cases. In Drosophila testis, stable actin structures, called actin cones, mediate spermatid individualization, a large-scale cellular remodeling process. These actin cones are composed of two structural domains, a front meshwork and a rear region of parallel bundles. Myosin VI is an important player in proper actin cone organization and function. Myosin VI localizes to the cones' fronts and its specific localization is required for proper actin cone formation and function during individualization. To understand how these structures are organized and assembled, ultrastructural studies are important to reveal both organization of actin and the precise localization of actin regulators relative to regions with different filament organizations. In the present work, we have developed a novel pre-embedding immunogold-silver labeling method for high-resolution analysis of protein distribution in actin structures which allowed both satisfactory antibody labeling and good ultrastructural preservation. Electron microscopic studies revealed that myosin VI accumulated at the extreme leading edge of the actin cone and preferentially localized throughout the front meshwork of the cone where branched actin filaments were most concentrated. No myosin VI labeling was found adjacent to the membranes along the length of the cone or connecting neighboring cones. This method has potential to reveal important information about precise relationships between actin-binding proteins, membranes, and different types of actin structures.


Subject(s)
Actins/metabolism , Immunohistochemistry/methods , Myosin Heavy Chains/metabolism , Spermatids/metabolism , Spermatids/ultrastructure , Animals , Drosophila melanogaster/metabolism , Drosophila melanogaster/ultrastructure , Male , Microscopy, Electron
20.
PLoS One ; 6(8): e22755, 2011.
Article in English | MEDLINE | ID: mdl-21853045

ABSTRACT

Actin structures are often stable, remaining unchanged in organization for the lifetime of a differentiated cell. Little is known about stable actin structure formation, organization, or maintenance. During Drosophila spermatid individualization, long-lived actin cones mediate cellular remodeling. Myosin VI is necessary for building the dense meshwork at the cones' fronts. We test several ideas for myosin VI's mechanism of action using domain deletions or site-specific mutations of myosin VI. The head (motor) and globular tail (cargo-binding) domains were both needed for localization at the cone front and dense meshwork formation. Several conserved partner-binding sites in the globular tail previously identified in vertebrate myosin VI were critical for function in cones. Localization and promotion of proper actin organization were separable properties of myosin VI. A vertebrate myosin VI was able to localize and function, indicating that functional properties are conserved. Our data eliminate several models for myosin VI's mechanism of action and suggest its role is controlling organization and action of actin assembly regulators through interactions at conserved sites. The Drosophila orthologues of interaction partners previously identified for vertebrate myosin VI are likely not required, indicating novel partners mediate this effect. These data demonstrate that generating an organized and functional actin structure in this cell requires multiple activities coordinated by myosin VI.


Subject(s)
Actins/metabolism , Conserved Sequence/genetics , Myosin Heavy Chains/chemistry , Myosin Heavy Chains/metabolism , Actin-Related Protein 3/metabolism , Actins/ultrastructure , Amino Acid Sequence , Animals , Blotting, Western , Drosophila melanogaster/cytology , Drosophila melanogaster/metabolism , Drosophila melanogaster/ultrastructure , Green Fluorescent Proteins/metabolism , Male , Molecular Sequence Data , Mutant Proteins/metabolism , Protein Binding , Protein Engineering , Protein Structure, Tertiary , Protein Transport , Recombinant Fusion Proteins/metabolism , Sequence Alignment , Spermatids/metabolism , Spermatogenesis , Structure-Activity Relationship , Sus scrofa , Testis/metabolism , Tissue Extracts , Transgenes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...