Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
3.
Adv Mater ; 33(1): e2008017, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33393157
5.
Adv Mater ; 31(1): e1807431, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30604933
7.
Chem Soc Rev ; 45(18): 5085-106, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27385627

ABSTRACT

Magnetite (Fe3O4) is a widespread magnetic iron oxide encountered in many biological and geological systems, and also in many technological applications. The magnetic properties of magnetite crystals depend strongly on the size and shape of its crystals. Hence, engineering magnetite nanoparticles with specific shapes and sizes allows tuning their properties to specific applications in a wide variety of fields, including catalysis, magnetic storage, targeted drug delivery, cancer diagnostics and magnetic resonance imaging (MRI). However, synthesis of magnetite with a specific size, shape and a narrow crystal size distribution is notoriously difficult without using high temperatures and non-aqueous media. Nevertheless, living organisms such as chitons and magnetotactic bacteria are able to form magnetite crystals with well controlled sizes and shapes under ambient conditions and in aqueous media. In these biomineralization processes the organisms use a twofold strategy to control magnetite formation: the mineral is formed from a poorly crystalline precursor phase, and nucleation and growth are controlled through the interaction of the mineral with biomolecular templates and additives. Taking inspiration from this biological strategy is a promising route to achieve control over the kinetics of magnetite crystallization under ambient conditions and in aqueous media. In this review we first summarize the main characteristics of magnetite and what is known about the mechanisms of magnetite biomineralization. We then describe the most common routes to synthesize magnetite and subsequently will introduce recent efforts in bioinspired magnetite synthesis. We describe how the use of poorly ordered, more soluble precursors such as ferrihydrite (FeH) or white rust (Fe(OH)2) can be employed to control the solution supersaturation, setting the conditions for continued growth. Further, we show how the use of various organic additives such as proteins, peptides and polymers allows for either the promotion or inhibition of magnetite nucleation and growth processes. At last we discuss how the formation of magnetite-based organic-inorganic hybrids leads to new functional nanomaterials.


Subject(s)
Magnetite Nanoparticles/chemistry , Animals , Calcification, Physiologic , Chemical Precipitation , Ferric Compounds/chemistry , Polyplacophora/chemistry , Tooth/chemistry
8.
Sci Rep ; 6: 29785, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27417732

ABSTRACT

Living organisms can produce inorganic materials with unique structure and properties. The biomineralization process is of great interest as it forms a source of inspiration for the development of methods for production of diverse inorganic materials under mild conditions. Nonetheless, regulation of biomineralization is still a challenging task. Magnetotactic bacteria produce chains of a prokaryotic organelle comprising a membrane-enveloped single-crystal magnetite with species-specific morphology. Here, we describe regulation of magnetite biomineralization through controlled expression of the mms7 gene, which plays key roles in the control of crystal growth and morphology of magnetite crystals in magnetotactic bacteria. Regulation of the expression level of Mms7 in bacterial cells enables switching of the crystal shape from dumbbell-like to spherical. The successful regulation of magnetite biomineralization opens the door to production of magnetite nanocrystals of desired size and morphology.


Subject(s)
Bacterial Proteins/metabolism , Ferrosoferric Oxide/chemistry , Magnetospirillum/metabolism , Nanoparticles/chemistry , Bacterial Proteins/genetics , Ferrosoferric Oxide/metabolism , Gene Expression Regulation, Bacterial , Magnetosomes/chemistry , Magnetosomes/metabolism , Magnetosomes/ultrastructure , Magnetospirillum/chemistry , Magnetospirillum/genetics , Microscopy, Electron, Transmission , Minerals/chemistry , Minerals/metabolism , Mutation , Nanoparticles/ultrastructure
9.
Chem Sci ; 7(9): 5624-5634, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-30034699

ABSTRACT

Living organisms often exploit solid but poorly ordered mineral phases as precursors in the biomineralization of their inorganic body parts. Generally speaking, such precursor-based approaches allow the organisms - without the need of high supersaturation levels - to accumulate significant quantities of mineral material at the desired place and time, where they can be molded and crystallized into the right morphology and structure. This strategy is also of interest in the field of bioinspired materials science, as it potentially enables the bottom-up creation of novel materials with equal or improved functionality as compared to Nature, in water and at ambient temperatures. Also for the biomineralization of magnetite (Fe3O4) such a strategy has been reported: ferrihydrite, a poorly crystalline iron oxide, has been identified as a precursor for the final magnetite phase in the magnetosomes of magnetotactic bacteria as well as in the outer layers of chiton teeth. In this perspective, we discuss the efforts of us and others to understand and tune the nucleation and growth of magnetite crystals to date, in aqueous, room-temperature syntheses and employing different solid precursor phases. The various examples demonstrate the importance of the precursor approach in controlling the different properties of magnetite nanoparticles.

10.
Nanotechnology ; 26(28): 285602, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-26118409

ABSTRACT

Ferrofluids (FFs) of metal oxide nanoparticles in ionic liquids (ILs) are a potentially useful class of magnetic materials for many applications because of their properties related to temperature/pressure stability, hydrophobicity, viscosity and recyclability. In this work, the screening of several designer surfactants for their stabilizing capabilities has resulted in the synthesis of stable FFs of superparamagnetic 7 ± 2 nm magnetite (Fe3O4) nanoparticles in the hydrophobic IL 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C(R)MIM][NTf2]). The designed and synthesized 1-butyl-3-(10-carboxydecyl)-1H-imidazol-3-ium bromide (ILC10-COOH) surfactant that combines the same imidazole moiety as the IL with a long alkyl chain ensured compatibility with the IL and increased the steric repulsion between the magnetite nanoparticles sufficiently such that stable dispersions of up to 50 wt% magnetite were obtained according to stability tests in the presence of a magnetic field (0.5-1 Tesla). Cryo-transmission electron microscopy (cryo-TEM) of the IL-based FFs allowed direct visualization of the surfactant-stabilized nanoparticles in the ILs and the native, hardly aggregated state of their dispersion.

11.
Faraday Discuss ; 179: 215-25, 2015.
Article in English | MEDLINE | ID: mdl-25865290

ABSTRACT

We show that by reacting ferrihydrite (FeH) with Fe((II)) ions and subsequently increasing the pH, magnetite is formed through a multi-step nucleation process mediated by monodisperse FeH-Fe((II)) primary particles. The interaction of these primary particles with a transient green rust phase leads to the formation of smaller secondary particles which form the feedstock for magnetite formation. Surprisingly, the presence of a polypeptide additive prevents the formation of green rust as an Fe((II))-rich intermediate phase, and leads to the formation of amorphous aggregates of FeH-Fe((II)) particles which subsequently transform into the final magnetite nanocrystals. The observation of multiple transitions and the involvement of disordered precursor phases in this bioinspired crystallization route is important for our understanding of the nucleation of magnetite in geological and biological environments, and may lead to new approaches in the sustainable synthesis of this technologically important mineral.


Subject(s)
Ferric Compounds/chemistry , Ferrosoferric Oxide/chemical synthesis , Crystallization , Ferrosoferric Oxide/chemistry , Hydrogen-Ion Concentration , Particle Size , Peptides/chemistry
12.
Chemistry ; 21(16): 6150-6, 2015 Apr 13.
Article in English | MEDLINE | ID: mdl-25740708

ABSTRACT

Biological systems show impressive control over the shape, size and organization of mineral structures, which often leads to advanced physical properties that are tuned to the function of these materials. Such control is also found in magnetotactic bacteria, which produce-in aqueous medium and at room temperature-magnetite nanoparticles with precisely controlled morphologies and sizes that are generally only accessible in synthetic systems with the use of organic solvents and/or the use of high-temperature methods. The synthesis of magnetite under biomimetic conditions, that is, in water and at room temperature and using polymeric additives as control agents, is of interest as a green production method for magnetic nanoparticles. Inspired by the process of magnetite biomineralization, a rational approach is taken by the use of a solid precursor for the synthesis of magnetite nanoparticles. The conversion of a ferrous hydroxide precursor, which we demonstrate with cryo-TEM and low-dose electron diffraction, is used to achieve control over the solution supersaturation such that crystal growth can be regulated through the interaction with poly-(α,ß)-dl-aspartic acid, a soluble, negatively charged polymer. In this way, stable suspensions of nanocrystals are achieved that show remanence and coercivity at the size limit of superparamagnetism, and which are able to align their magnetic moments forming strings in solution as is demonstrated by cryo-electron tomography.


Subject(s)
Magnetite Nanoparticles/chemistry , Biomimetics , Crystallization , Hydroxides/chemistry , Kinetics , Magnetite Nanoparticles/ultrastructure , Nanotechnology , Oxidation-Reduction , Water/chemistry
13.
Biomacromolecules ; 15(10): 3687-95, 2014 Oct 13.
Article in English | MEDLINE | ID: mdl-25189595

ABSTRACT

Random copolypeptides are promising and versatile bioinspired macromolecules of minimal complexity for studying their interactions with both living and synthetic matter. They provide the opportunity to investigate the role of, for example, total net charge and hydrophobicity through simply changing the monomer composition, without considering the effect of specific sequences or secondary structure. However, synthesizing large libraries of these polymers so far was prohibited by the time-consuming preparation methods available (ring-opening polymerization (ROP) of amino acid N-carboxyanhydrides and enzymatic polymerization of amino acids). Here we report the automated solid phase synthesis (SPS) of a complete library of polypeptides containing Glu, Lys, and Ala monomers with excellent control over the degree of polymerization and composition and with polydispersity indices (PDIs) between 1.01 and 1.001, which is impossible to achieve by other methods. This method provides access to a library of polymers with a precisely defined total charge that can range from approximately -15 to +15 per chain and with a disordered conformation almost completely devoid of any secondary structure. In solution the polymers are largely present as unimers, with only the most hydrophobic polypeptides showing slight signs of aggregation. Our new approach provides convenient access to libraries of this versatile class of polymers with tunable composition, which can be used in a wide variety of physicochemical studies as a tool that allows systematic variation of charge and hydrophobicity, without the interference of secondary structure or aggregation on their performance.


Subject(s)
Peptide Library , Peptides/chemistry , Polymers/chemistry , Amino Acids/chemistry , Biocompatible Materials/chemistry , Hydrophobic and Hydrophilic Interactions , Polymerization , Solid-Phase Synthesis Techniques/methods , Solutions/chemistry
14.
J Am Chem Soc ; 134(2): 1367-73, 2012 Jan 18.
Article in English | MEDLINE | ID: mdl-22191708

ABSTRACT

While biogenic calcites frequently contain appreciable levels of magnesium, the pathways leading to such high concentrations remain unclear. The production of high-magnesian calcites in vitro is highly challenging, because Mg-free aragonite, rather than calcite, is the favored product in the presence of strongly hydrated Mg(2+) ions. While nature may overcome this problem by forming a Mg-rich amorphous precursor, which directly transforms to calcite without dissolution, high Mg(2+)/Ca(2+) ratios are required synthetically to precipitate high-magnesian calcite from solution. Indeed, it is difficult to synthesize amorphous calcium carbonate (ACC) containing high levels of Mg, and the Mg is typically not preserved in the calcite product as the transformation occurs via a dissolution-reprecipitation route. We here present a novel synthetic method, which employs a strategy based on biogenic systems, to generate high-magnesian calcite. Mg-containing ACC is produced in a nonaqueous environment by reacting a mixture of Ca and Mg coordination complexes with CO(2). Control over the Mg incorporation is simply obtained by the ratio of the starting materials. Subsequent crystallization at reduced water activities in an organic solvent/water mixture precludes dissolution and reprecipitation and yields high-magnesian calcite mesocrystals with Mg contents as high as 53 mol %. This is in direct contrast with the polycrystalline materials generally observed when magnesian calcite is formed synthetically. Our findings give insight into the possible mechanisms of formation of biogenic high-magnesian calcites and indicate that precise control over the water activity may be a key element.


Subject(s)
Calcium Carbonate/chemistry , Magnesium/chemistry , Calcium/chemistry , Carbon Dioxide/chemistry , Chemical Precipitation , Crystallization , Microscopy, Electron, Transmission , Molecular Structure , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...