Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Animals (Basel) ; 14(12)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38929364

ABSTRACT

Hyperthermia elicits several physiological and behavioral responses in livestock to restore thermal neutrality. Among these responses, vasodilation and sweating help to reduce core body temperature by increasing heat dissipation by radiation and evaporation. Thermoregulatory behaviors such as increasing standing time, reducing feed intake, shade-seeking, and limiting locomotor activity also increase heat loss. These mechanisms are elicited by the connection between peripheral thermoreceptors and cerebral centers, such as the preoptic area of the hypothalamus. Considering the importance of this thermoregulatory pathway, this review aims to discuss the hypothalamic control of hyperthermia in livestock, including the main physiological and behavioral changes that animals adopt to maintain their thermal stability.

2.
Animals (Basel) ; 14(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731269

ABSTRACT

Several types of enrichment can be used to improve animal welfare. This review summarizes the literature on the use of mechanical brushes, tactile udder stimulation, music, and visual stimuli as enrichment methods for dairy cows. Mechanical brushes and tactile stimulation of the udder have been shown to have a positive effect on milk yield and overall behavioral repertoire, enhancing natural behavior. Classical music reduces stress levels and has similarly been associated with increased milk yield. A slow or moderate tempo (70 to 100 bpm) at frequencies below 70 dB is recommended to have this positive effect. Evidence on the impacts of other types of enrichment, such as visual stimulation through mirrors, pictures, and color lights, or the use of olfactory stimuli, is equivocal and requires further study.

3.
Animals (Basel) ; 14(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38731370

ABSTRACT

Most of the responses present in animals when exposed to stressors are mediated by the autonomic nervous system. The sympathetic nervous system, known as the one responsible for the "fight or flight" reaction, triggers cardiovascular changes such as tachycardia or vasomotor alterations to restore homeostasis. Increase in body temperature in stressed animals also activates peripheral compensatory mechanisms such as cutaneous vasodilation to increase heat exchange. Since changes in skin blood flow influence the amount of heat dissipation, infrared thermography is suggested as a tool that can detect said changes. The present review aims to analyze the application of infrared thermography as a method to assess stress-related autonomic activity, and their association with the cardiovascular and heart rate variability in domestic animals.

4.
Animals (Basel) ; 14(7)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38612305

ABSTRACT

The present review aims to analyze the anatomical and physiological characteristics of the mammary gland and udders of water buffalo by making an anatomofunctional comparison with dairy cattle. It will also discuss the knowledge generated around the physiological regulation of milk ejection in the water buffalo. It was found that buffalo's average udder depth and width is approximately 20 cm smaller than Bos cattle. One of the main differences with dairy cattle is a longer teat canal length (around 8.25-11.56 cm), which highly influences buffalo milking. In this sense, a narrower teat canal (2.71 ± 0.10 cm) and thicker sphincter muscle are associated with needing higher vacuum levels when using machine milking in buffalo. Moreover, the predominant alveolar fraction of water buffalo storing 90-95% of the entire milk production is another element that can be related to the lower milk yields in buffalo (when compared to Bos cattle) and the requirements for prolonged prestimulation in this species. Considering the anatomical characteristics of water buffalo's udder could help improve bubaline dairy systems.

5.
Animals (Basel) ; 14(3)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38338158

ABSTRACT

When an organism detects decreases in their core body temperature, the hypothalamus, the main thermoregulatory center, triggers compensatory responses. These responses include vasomotor changes to prevent heat loss and physiological mechanisms (e.g., shivering and non-shivering thermogenesis) for heat production. Both types of changes require the participation of peripheral thermoreceptors, afferent signaling to the spinal cord and hypothalamus, and efferent pathways to motor and/or sympathetic neurons. The present review aims to analyze the scientific evidence of the hypothalamic control of hypothermia and the central and peripheral changes that are triggered in domestic animals.

6.
Animals (Basel) ; 13(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37443964

ABSTRACT

Hypothermia is one of the principal causes of perinatal mortality in water buffaloes and can range from 3% to 17.9%. In ruminants, factors affecting hypothermia in newborns may be of intrinsic (e.g., level of neurodevelopment, birth weight, vitality score, amount of brown fat, skin features) or extrinsic origin (e.g., maternal care, environmental conditions, colostrum consumption). When newborn buffaloes are exposed to cold stress, thermoregulatory mechanisms such as peripheral vasoconstriction and shivering and non-shivering thermogenesis are activated to prevent hypothermia. Due to the properties of infrared thermography (IRT), as a technique that detects vasomotor changes triggered by a reduction in body temperature, evaluating the central and peripheral regions in newborn buffaloes is possible. This review aims to analyze behavioral, physiological, and morphological strategies and colostrum consumption as thermal compensation mechanisms in newborn water buffalo to cope with environmental changes affecting thermoneutrality. In addition, the importance of monitoring by IRT to identify hypothermia states will be highlighted. Going deeper into these topics related to the water buffalo is essential because, in recent years, this species has become more popular and is being bred in more geographic areas.

7.
J Therm Biol ; 114: 103568, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37162166

ABSTRACT

High temperatures for extended periods, which do not allow animals to recover from heat stress, affect in particular those BLV-infected animals that carry a high proviral load. For this study, animals were discriminated between BLV (+) and BLV (-), and those belonging to the first group, were classified based on their proviral load. The expression of the inflammatory cytokine TNF-α and its receptors, which play an important role in disease progression, were quantified by qPCR in two different seasons. During the summer, average temperature was 19.8 °C, maximums higher than 30 °C were frequent. Instead, during the autumn, the average temperature was 12.63 °C, and temperatures never exceeded 27 °C. During this season, almost no periods of temperatures exceeded the comfort limit. Our results revealed that the expression levels of TNF-α and its receptors were downregulated in animals with high proviral load. This fact could affect their antiviral response and predispose to viral dissemination; over time, animals with a poorer immune system are prone to acquiring opportunistic diseases. Conversely, animals with LPL maintained their expression profile, with behavior comparable to non-infected animals. These findings should be considered by producers and researchers, given the problems that global warming is causing lately to the planet.

8.
Tissue Cell ; 82: 102079, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37058813

ABSTRACT

Hematopoiesis occurs in different anatomical niches throughout the life of the individual. The first hematopoietic extra-embryonic stage is replaced by a intra-embryonic stage that occurs in a region that is adjacent to the dorsal aorta. Then, the prenatal hematopoietic function is continued by the liver and spleen, and later by the bone marrow. The objective of the present work was to describe the morphological characteristics of hepatic hematopoiesis in the alpaca and to analyze the proportion of the hematopoietic compartment of the organ and the cell types, at different times of ontogeny. Sixty-two alpaca samples were collected from the municipal slaughterhouse of Huancavelica, Perú. They were processed by routine histological techniques. Hematoxylin-eosin staining, special dyes, immunohistochemical techniques and supplementary analyses by lectinhistochemistry, were performed. The prenatal liver is an important structure in the expansion and differentiation of hematopoietic stem cells. Their hematopoietic activity was characterized by four stages: initiation, expansion, peak, and involution. The liver started its hematopoietic function at 21 days EGA and it was maintained until shortly before birth. Differences were found in the proportion and morphology of the hematopoietic tissue in the different groups corresponding to each gestational stage.


Subject(s)
Camelids, New World , Pregnancy , Animals , Female , Hematopoiesis , Liver , Hematopoietic Stem Cells/metabolism , Bone Marrow
9.
Animals (Basel) ; 14(1)2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38200873

ABSTRACT

Infrared thermography (IRT) is a technique that indirectly assesses peripheral blood circulation and its resulting amount of radiated heat. Due to these properties, thermal imaging is currently applied in human medicine to noninvasively evaluate peripheral vascular disorders such as thrombosis, thromboembolisms, and other ischemic processes. Moreover, tissular damage (e.g., burn injuries) also causes microvasculature compromise. Therefore, thermography can be applied to determine the degree of damage according to the viability of tissues and blood vessels, and it can also be used as a technique to monitor skin transplant procedures such as grafting and free flaps. The present review aims to summarize and analyze the application of IRT in veterinary medicine as a method to indirectly assess peripheral vascular integrity and its relation to the amount of radiated heat and as a diagnostic technique for tissue viability, degree of damage, and wound care.

10.
Animals (Basel) ; 12(19)2022 Oct 02.
Article in English | MEDLINE | ID: mdl-36230390

ABSTRACT

The present review aims to integrate the anatomical characteristics of the mammary gland and the neurophysiology of milk ejection to understand the milking capacity of the water buffalo. Since one of the main uses of this species is milk production, this article will analyze the controversies on the use of oxytocin as a stimulant during milking as well as the existing alternatives that farmers apply to promote correct stimulation during milk letdown. According to the available literature, the efficiency of the milking process, the quality of the milk, and the health of the animals are elements that require the consideration of species-specific characteristics to enhance the performance of buffaloes. The incorporation of technological innovations and competitive strategies could contribute to a better understanding of water buffalo in the milk industry.

11.
Animals (Basel) ; 12(1)2022 Jan 02.
Article in English | MEDLINE | ID: mdl-35011212

ABSTRACT

This review presents and analyzes recent scientific findings on the structure, physiology, and neurotransmission mechanisms of transient receptor potential (TRP) and their function in the thermoregulation of mammals. The aim is to better understand the functionality of these receptors and their role in maintaining the temperature of animals, or those susceptible to thermal stress. The majority of peripheral receptors are TRP cation channels formed from transmembrane proteins that function as transductors through changes in the membrane potential. TRP are classified into seven families and two groups. The data gathered for this review include controversial aspects because we do not fully know the mechanisms that operate the opening and closing of the TRP gates. Deductions, however, suggest the intervention of mechanisms related to G protein-coupled receptors, dephosphorylation, and ligands. Several questions emerge from the review as well. For example, the future uses of these data for controlling thermoregulatory disorders and the invitation to researchers to conduct more extensive studies to broaden our understanding of these mechanisms and achieve substantial advances in controlling fever, hyperthermia, and hypothermia.

12.
Vet Res Commun ; 45(4): 431-439, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34453235

ABSTRACT

Bovine leukemia virus (BLV) main host cells are B lymphocytes. Infected animals can be classified into high or low proviral load (HPL or LPL respectively), regarding the number of proviral copies infected lymphocytes they carry. After infection, there is an overexpression of several cytokines, particularly TNF-α, which has a delicate regulation mediated by receptors TNFRI and TNFRII; the first one involved with apoptosis, while the other stimulates cell proliferation. The study aimed to quantify TNF-α and its receptors mRNA expression, and in which extent in vitro proliferation was affected, in peripheral blood mononuclear cells (PBMC) from BLV-infected animals with different proviral loads, after the addition or not of synthetic TNF-α (rTNF-α) for 48 h. PBMC from BLV-infected animals showed spontaneous proliferation after 48 h in culture but did not show changes in proliferation rates after 48 h incubation in the presence of the rTNF-α. TNF-α mRNA expression after 48 h culture without exogenous stimulation was significantly lower, regardless of the proviral load of the donor, compared to non-infected animals. In the LPL animals, the expression of TNF-α mRNA was significantly lower with respect to the control group while the expression of TNFRI mRNA was significantly increased. The HPL animals showed a significant decrease in the expression of TNF-α and TNFRII mRNA respect to the control group. After 48 h incubation with rTNF-α, PBMC from infected animals had different responses: TNF-α and TNFRI mRNA expression was reduced in PBMC from the LPL group compared to the BLV negative group, but no differences were observed in PBMC from the HPL group. TNFRII mRNA expression showed no differences between HPL, LPL, and BLV negative groups, though HPL animals expressed 10.35 times more TNFRI mRNA than LPL. These results support the hypothesis that LPL animals, when faced with viral reactivation, present a pro-apoptotic and anti-proliferative state. However, complementary studies are needed to explain the influence of TNFRII on the development of the HLP profile. On the other hand, exogenous stimulation studies reinforce the hypothesis that BLV infection compromises the immune response of the animals.


Subject(s)
Enzootic Bovine Leukosis/immunology , Leukemia Virus, Bovine/physiology , Receptors, Tumor Necrosis Factor, Type II/genetics , Receptors, Tumor Necrosis Factor, Type I/genetics , Tumor Necrosis Factor-alpha/genetics , Viral Load , Animals , Cattle , Cell Proliferation , Cytokines/immunology , Enzootic Bovine Leukosis/virology , Gene Expression , Immune System , Leukocytes, Mononuclear/virology , RNA, Messenger/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Receptors, Tumor Necrosis Factor, Type II/metabolism , Tumor Necrosis Factor-alpha/metabolism
13.
Animals (Basel) ; 11(8)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34438705

ABSTRACT

Infrared thermography (IRT) is a non-ionizing, non-invasive technique that permits evaluating the comfort levels of animals, a topic of concern due to the growing interest in determining the state of health and welfare of production animals. The operating principle of IRT is detecting the heat irradiated in anatomical regions characterized by a high density of near-surface blood vessels that can regulate temperature gain or loss from/to the environment by modifying blood flow. This is essential for understanding the various vascular thermoregulation mechanisms of different species, such as rodents and ruminants' tails. The usefulness of ocular, nasal, and vulvar thermal windows in the orbital (regio orbitalis), nasal (regio nasalis), and urogenital (regio urogenitalis) regions, respectively, has been demonstrated in cattle. However, recent evidence for the river buffalo has detected discrepancies in the data gathered from distinct thermal regions in these large ruminants, suggesting a limited sensitivity and specificity when used with this species due to various factors: the presence of hair, ambient temperature, and anatomical features, such as skin thickness and variations in blood supplies to different regions. In this review, a literature search was conducted in Scopus, Web of Science, ScienceDirect, and PubMed, using keyword combinations that included "infrared thermography", "water buffalo", "river buffalo" "thermoregulation", "microvascular changes", "lacrimal caruncle", "udder", "mastitis", and "nostril". We discuss recent findings on four thermal windows-the orbital and nasal regions, mammary gland in the udder region (regio uberis), and vulvar in the urogenital region (regio urogenitalis)-to elucidate the factors that modulate and intervene in validating thermal windows and interpreting the information they provide, as it relates to the clinical usefulness of IRT for cattle (Bos) and the river buffalo (Bubalus bubalis).

14.
Vet Immunol Immunopathol ; 235: 110232, 2021 May.
Article in English | MEDLINE | ID: mdl-33799007

ABSTRACT

Heat stress is one of the environmental factors that most severely affects milk industry, as it has impact on production, immune responses and reproductive performance. The present study was conducted with high-performance Holando-Argentino cows. Our objective was to study TNF-α and its receptors pattern expression in cows from a region characterized by extreme climatic seasonality. Animals were evaluated in three periods: spring (n = 15), summer (n = 14) and autumn (n = 11). Meteorological records from a local station were used to estimate the temperature and humidity index (THI) by means of an equation previously defined. A THI higher than 68 is indicative of stressing conditions. During the summer period, the animals were exposed to 8.5 ±â€¯1.09 h of heat stress, or THI > 68. In spring, stress hours were reduced to 1.4 ±â€¯0.5 every day, while during the autumn, there were no recorded heat stress events. Expression of TNF-α, and its receptors was determined by qPCR. During the summer, TNF-α and its receptors expression diminished drastically compared to the rest of the year, when stressful conditions were infrequent. We conclude that animals that are not physiologically prepared to resist high temperatures might have a less efficient immune response, reinforcing the need to develop new strategies to improve animal welfare.


Subject(s)
Heat Stress Disorders/immunology , Heat Stress Disorders/veterinary , Heat-Shock Response/genetics , Heat-Shock Response/immunology , Receptors, Tumor Necrosis Factor/genetics , Tumor Necrosis Factor-alpha/genetics , Animals , Cattle , Cattle Diseases/immunology , Female , Heat Stress Disorders/genetics , Hot Temperature , Humidity , Lactation , Leukocytes, Mononuclear/immunology , Receptors, Tumor Necrosis Factor/immunology , Seasons , Tumor Necrosis Factor-alpha/immunology
15.
Virus Res ; 271: 197678, 2019 10 02.
Article in English | MEDLINE | ID: mdl-31381943

ABSTRACT

Bovine leukemia virus (BLV) is a retrovirus that infects cattle and is associated with an increase in secondary infections. The objective of this study was to analyze the effect of BLV infection on cell viability, apoptosis and morphology of a bovine mammary epithelial cell line (MAC-T), as well as Toll like receptors (TLR) and cytokine mRNA expression. Our findings show that BLV infection causes late syncytium formation, a decrease in cell viability, downregulation of the anti-apoptotic gene Bcl-2, and an increase in TLR9 mRNA expression. Moreover, we analyzed how this stably infected cell line respond to the exposure to Staphylococcus aureus (S. aureus), a pathogen known to cause chronic mastitis. In the presence of S. aureus, MAC-T BLV cells had decreased viability and decreased Bcl-2 and TLR2 mRNA expression. The results suggest that mammary epithelial cells infected with BLV have altered the apoptotic and immune pathways, probably affecting their response to bacteria and favoring the development of mastitis.


Subject(s)
Epithelial Cells/virology , Host-Pathogen Interactions , Leukemia Virus, Bovine/physiology , Animals , Apoptosis/genetics , Biomarkers , Cattle , Cell Line , Cell Proliferation , Cell Survival , Cytokines/metabolism , Cytopathogenic Effect, Viral , Enzootic Bovine Leukosis/metabolism , Enzootic Bovine Leukosis/virology , Epithelial Cells/metabolism , Female , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/virology , Mastitis, Bovine/metabolism , Mastitis, Bovine/virology , Toll-Like Receptors/metabolism
16.
Vet Immunol Immunopathol ; 206: 41-48, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30502911

ABSTRACT

Bovine leukemia virus (BLV) is one of the most important virus in dairy cattle. The infection behavior follows what we call the iceberg phenomenon: 60% of infected animals do not show clinical signs; 30% develop persistent lymphocytosis (PL); and the remaining 10%, die due to lymphosarcoma. BLV transmission depends on infected cell exchange and thus, proviral load is determinant. Understanding the mechanisms by which cattle governs the control of viral dissemination will be desirable for designing effective therapeutic or preventive strategies for BLV. The development of high proviral load (HPL) or low proviral load (LPL) might be associated to genetic factors and humoral immune responses, however cellular responses are not fully described. It is known that BLV affects cellular homeostasis: proliferation and apoptosis. It is also known that the BLV tropism is directed towards B lymphocytes, and that lymphocytotic animals have elevated amounts of these cells. Usually, when an animal is infected by BLV, the B markers that increase are CD21, CD5 and CD11b. This increase could be related to the modulation of apoptosis in these cells. This is the first work in which animals infected with BLV are classified according to their proviral load and the subpopulations of B and T lymphocytes are evaluated in terms of their percentage in peripheral blood and its stage of apoptosis and viability. PBMCs from HPL animals proliferated more than LPL and non-infected animals. CD11b+/CD5+ lymphocytes in LPL animals presented greater early and late apoptosis than HPL animals and cells of HPL animals had increased viability than LPL animals. Our results confirm that BLV alters the mechanism of apoptosis and proliferation of infected cells.


Subject(s)
Apoptosis , Enzootic Bovine Leukosis/immunology , Leukemia Virus, Bovine/immunology , Lymphocyte Subsets/immunology , Viral Load/veterinary , Animals , Cattle , Cell Proliferation , Cells, Cultured , Female
17.
Virus Res ; 256: 11-16, 2018 09 02.
Article in English | MEDLINE | ID: mdl-30055215

ABSTRACT

Bovine leukemia virus (BLV) is a retrovirus that affects cattle causing a lymphoproliferative disease. BLV infection has been associated with misbalance of the immune response causing a higher incidence of other infections. Mastitis is one of the most important conditions that affect milk production in cattle. The aim of this study was to stably infect a bovine mammary epithelial cell line (MAC-T). MAC-T cell line was successfully infected with BLV and the infection was confirmed by nested PCR, qPCR, immunocytochemistry, western blot and transmission electron microscopy. This is the first report of a bovine mammary epithelial cell line stably infected with BLV. This new cell line could be used as an in vitro model to study the effect of BLV on the immune response in the mammary gland and the relationship with other agents causing mastitis.


Subject(s)
Epithelial Cells/virology , Leukemia Virus, Bovine/growth & development , Animals , Blotting, Western , Cattle , Cell Line , Immunohistochemistry , Leukemia Virus, Bovine/genetics , Microscopy, Electron, Transmission , Polymerase Chain Reaction , RNA, Viral/analysis , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Viral Proteins/analysis
18.
J Mammary Gland Biol Neoplasia ; 23(3): 101-107, 2018 09.
Article in English | MEDLINE | ID: mdl-29777406

ABSTRACT

The incidence of breast cancer is continuously increasing worldwide, as influenced by many factors that act synergistically. In the last decade there was an increasing interest in the possible viral etiology of human breast cancer. Since then, many viruses have been associated with this disease (murine mammary tumor virus, MMTV; Epstein-Barr virus, EBV; and human papillomavirus, HPV). Recently, BLV has been identified in human breast cancers giving rise to the hypothesis that it could be one of the causative agents of this condition. BLV is a retrovirus distributed worldwide that affects cattle, causing lymphosarcoma in a small proportion of infected animals. Because of its similarity with human retroviruses like HTLV and HIV, BLV was assumed to also be involved in tumor emergence. Based on this assumption, studies were focused on the possible role of BLV in human breast cancer development. We present a compilation of the current knowledge on the subject and some prospective analysis that is required to fully end this controversy.


Subject(s)
Breast Neoplasms/etiology , Breast Neoplasms/virology , Leukemia Virus, Bovine/pathogenicity , Animals , Cattle , Humans
19.
Braz. J. Vet. Res. Anim. Sci. (Online) ; 54(3): 215-224, 2017. tab
Article in English | LILACS, VETINDEX | ID: biblio-879383

ABSTRACT

Bovine leukemia virus (BLV) is associated with the most common neoplastic disease of cattle. BLV has a silent dissemination in the herd due to infected cell exchange, thus the concentration of BLV-infected cells in blood should play a major role in the success of viral transmission. Genes from Bovine leukocyte antigen (BoLA), the MHC system of cattle, are associated with genetic resistance and susceptibility to a wide range of diseases, and also with production traits. Some BoLA DRB3.2 allele polymorphisms in Holstein cattle have been associated with resistance or susceptibility to BLV-disease development, or with proviral load (PVL). This investigation studied 107 BLV-infected Argentinean Holstein dairy cows, all of them belonging to one herd. PVL was analysed by qPCR and animals were classified as high proviral load (HPVL, N = 88) and low proviral load (LPVL, N = 19), and BoLA DRB3.2 alleles were genotyped. Alleles BoLA DRB3.2*1501 and *1201 were significantly associated with HPVL (p = 0.0230 and p = 0.0111 respectively), while allele BoLA DRB3.2*0201 was significantly associated with LPVL (p = 0.0030). The present study aims at contributing to the knowledge of the association between BoLA polymorphism and development of a BLV infection profile. Genes that best explain the PVL in this population resulted BoLA DRB3.2*0201 (as a protection factor) and *1501 (as a risk factor). Allelic differences may play an important role in the development of effective immune responses. A better understanding of how BoLA polymorphism contributes to these responses and the establishment of a BLV status is desirable to schedule and evaluate control measures.(AU)


O vírus da leucemia bovina (BLV) está associado à doença neoplásica mais comum do gado bovino. O BLV tem uma disseminação silenciosa no rebanho devido à troca de células infectadas, assim, a concentração de células BLV infectadas no sangue deve desempenhar um papel importante no sucesso da transmissão viral. Os genes do antígeno leucocitário bovino (BoLA), sistema MHC do gado bovino, estão associados à resistência genética e à susceptibilidade a uma ampla gama de doenças, bem como às características da produção. Alguns polimorfismos de alelos de BoLA DRB3.2 em bovinos Holstein têm sido associados à resistência ou susceptibilidade ao desenvolvimento da doença BLV, ou com carga proviral (PVL). Esta investigação avaliou 107 vacas leiteiras da raça Holstein argentina infectadas com BLV e pertencentes a um único rebanho. A PVL foi analisada por qPCR, os animais foram classificados em alta carga proviral (HPVL, N = 88) e baixa carga proviral (LPVL, N = 19), e os alelos BoLA DRB3.2 foram genotipados. Os alelos BoLA DRB3.2*1501 e *1201 estavam significativamente relacionados à HPVL (p = 0,0230 e p = 0,0111, respectivamente), enquanto o alelo BoLA DRB3.2*0201, à LPVL (p = 0,0030). O objetivo deste estudo é contribuir para o conhecimento da associação entre o polimorfismo de BoLA e o desenvolvimento de infecção por BLV. Os genes que melhor explicam a PVL na população analisada resultaram em BoLA DRB3.2*0201 (como fator de proteção) e *1501 (como fator de risco). As diferenças alélicas podem desempenhar um papel importante no desenvolvimento de respostas imunitárias eficazes. Uma melhor compreensão de como o polimorfismo BoLA contribui para estas respostas e o estabelecimento de um estado BLV é desejável para agendar e avaliar as medidas de controle.(AU)


Subject(s)
Animals , Cattle , Antigens , Leukemia Virus, Bovine/genetics , Polymorphism, Genetic , Viral Load/veterinary
20.
Res Vet Sci ; 107: 190-195, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27473994

ABSTRACT

Bovine leukemia virus (BLV) infection is widespread mainly in dairy cattle and 5-10% of infected animals will die due to lymphosarcoma; most cattle remain asymptomatic but 30% develop persistent lymphocytosis (PL). BLV transmission depends on infected cell exchange and thus, proviral load is determinant. Understanding the mechanisms which govern the control of viral dissemination will be desirable for the design of effective therapeutic or preventive strategies for BLV. The development of high proviral load (HPL) or low proviral load (LPL) might be associated to genetic factors and humoral immune responses, however cellular responses are not fully described. We aimed to characterize cytokines and toll-like receptors (TLR) expression related to the proviral load profiles. IFN-γ and IL-12 mRNA expression level was significantly higher in PBMC from infected cattle (LPL n=6 and HPL n=7) compared to uninfected animals (n=5). While no significant differences were observed in IL-12 expression between LPL and HPL group, IFN-γ expression was significantly higher in LPL animals. Infected cattle exhibited higher expression levels of TLR3, 7-9. Animals with HPL had significantly higher expression of TLR7/8 than uninfected cattle. TLR8 and TLR9 were up-regulated in HPL group, and TLR3 was up-regulated in LPL group. This is the first report related to TLR gene expression in BLV infected cattle and represents evidence of the involvement of these receptors in BLV recognition. Further studies on different subpopulations of immune cells may help clarify their role in response to BLV and its consequences on viral dissemination.


Subject(s)
Enzootic Bovine Leukosis/virology , Interferon-gamma/metabolism , Interleukin-12/metabolism , Leukemia Virus, Bovine/physiology , Proviruses , Toll-Like Receptors/metabolism , Animals , Cattle , Cytokines/genetics , Enzootic Bovine Leukosis/metabolism , Gene Expression Regulation/physiology , Interferon-gamma/genetics , Interleukin-12/genetics , Leukocytes, Mononuclear/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Toll-Like Receptors/genetics , Viral Load , Virion/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...