Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bone ; 138: 115477, 2020 09.
Article in English | MEDLINE | ID: mdl-32535289

ABSTRACT

Osteoporosis is the most common bone disorder worldwide and is associated with a reduced quality of life with important clinical and economic consequences. The most widely accepted etiopathogenic hypothesis on the origin of osteoporosis and its complications is that they are a consequence of the synergic action of environmental and genetic factors. Bone is constantly being remodelled through anabolic and catabolic pathways in which inflammation, the NF-kB pathway and the renin-angiotensin-aldosterone system (RAAS) are crucial. The aim of our study was to determine whether polymorphisms in genes implicated in inflammation, the NF-kB pathway and RAAS modified the risk of osteoporotic fracture. We analysed 221 patients with osteoporotic fracture and 354 controls without fracture from the HORTEGA sample after 12-14 years of follow up. In addition, we studied the genotypic distribution of 230 single nucleotide polymorphisms (SNPs) in genes involved in inflammation, NF-kB pathway and RAAS. Our results showed that be carrier of the C allele of the rs2228145 IL6R polymorphism was the principal genetic risk factor associated with osteoporotic fracture. The results also showed that variant genotypes of the rs4762 AGT, rs4073 IL8, rs2070699 END1 and rs4291 ACE polymorphisms were important genetic risk factors for fracture. The study provides information about the genetic factors associated with inflammation, the NF-kB pathway and RAAS, which are involved in the risk of osteoporotic fracture and reinforces the hypothesis that genetic factors are crucial in the etiopathogenesis of osteoporosis and its complications.


Subject(s)
Osteoporotic Fractures , Renin-Angiotensin System , Follow-Up Studies , Humans , Inflammation/genetics , NF-kappa B/genetics , Osteoporotic Fractures/genetics , Quality of Life , Renin-Angiotensin System/genetics
2.
Article in English | MEDLINE | ID: mdl-29685964

ABSTRACT

We explored the association of metal levels with subclinical atherosclerosis and epigenetic changes in relevant biological pathways. Whole blood DNA Infinium Methylation 450 K data were obtained from 23 of 73 middle age men without clinically evident cardiovascular disease (CVD) who participated in the Aragon Workers Health Study in 2009 (baseline visit) and had available baseline urinary metals and subclinical atherosclerosis measures obtained in 2010-2013 (follow-up visit). The median metal levels were 7.36 µg g-1, 0.33 µg g-1, 0.11 µg g-1 and 0.07 µg g-1, for arsenic (sum of inorganic and methylated species), cadmium, antimony and tungsten, respectively. Urine cadmium and tungsten were associated with femoral and carotid intima-media thickness, respectively (Pearson's r = 0.27; p = 0.03 in both cases). Among nearest genes to identified differentially methylated regions (DMRs), 46% of metal-DMR genes overlapped with atherosclerosis-DMR genes (p < 0.001). Pathway enrichment analysis of atherosclerosis-DMR genes showed a role in inflammatory, metabolic and transport pathways. In in silico protein-to-protein interaction networks among proteins encoded by 162 and 108 genes attributed to atherosclerosis- and metal-DMRs, respectively, with proteins known to have a role in atherosclerosis pathways, we observed hub proteins in the network associated with both atherosclerosis and metal-DMRs (e.g. SMAD3 and NOP56), and also hub proteins associated with metal-DMRs only but with relevant connections with atherosclerosis effectors (e.g. SSTR5, HDAC4, AP2A2, CXCL12 and SSTR4). Our integrative in silico analysis demonstrates the feasibility of identifying epigenomic regions linked to environmental exposures and potentially involved in relevant pathways for human diseases. While our results support the hypothesis that metal exposures can influence health due to epigenetic changes, larger studies are needed to confirm our pilot results.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'.


Subject(s)
Atherosclerosis/urine , Epigenesis, Genetic , Metals/urine , Asymptomatic Diseases , Atherosclerosis/chemically induced , Computer Simulation , DNA Methylation , Humans , Longitudinal Studies , Middle Aged , Pilot Projects , Spain
3.
Sci Rep ; 7(1): 5120, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28698603

ABSTRACT

Genome-wide Illumina InfiniumMethylation 450 K DNA methylation analysis was performed on blood samples from clinical atherosclerosis patients (n = 8) and healthy donors (n = 8) in the LVAD study (NCT02174133, NCT01799005). Multiple differentially methylated regions (DMR) could be identified in atherosclerosis patients, related to epigenetic control of cell adhesion, chemotaxis, cytoskeletal reorganisations, cell proliferation, cell death, estrogen receptor pathways and phagocytic immune responses. Furthermore, a subset of 34 DMRs related to impaired oxidative stress, DNA repair, and inflammatory pathways could be replicated in an independent cohort study of donor-matched healthy and atherosclerotic human aorta tissue (n = 15) and human carotid plaque samples (n = 19). Upon integrated network analysis, BRCA1 and CRISP2 DMRs were identified as most central disease-associated DNA methylation biomarkers. Differentially methylated BRCA1 and CRISP2 regions were verified by MassARRAY Epityper and pyrosequencing assays and could be further replicated in blood, aorta tissue and carotid plaque material of atherosclerosis patients. Moreover, methylation changes at BRCA1 and CRISP2 specific CpG sites were consistently associated with subclinical atherosclerosis measures (coronary calcium score and carotid intima media thickness) in an independent sample cohort of middle-aged men with subclinical cardiovascular disease in the Aragon Workers' Health Study (n = 24). Altogether, BRCA1 and CRISP2 DMRs hold promise as novel blood surrogate markers for early risk stratification and CVD prevention.


Subject(s)
Atherosclerosis/genetics , BRCA1 Protein/genetics , Biomarkers/blood , DNA Methylation , Glycoproteins/genetics , Adult , Aged , Aged, 80 and over , Atherosclerosis/blood , BRCA1 Protein/blood , Carotid Intima-Media Thickness , Cell Adhesion Molecules , Cohort Studies , CpG Islands , Epigenesis, Genetic , Female , Gene Regulatory Networks , Glycoproteins/blood , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...