Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(14)2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37514367

ABSTRACT

This paper deals with the study of the degradation of polylactic acid (PLA) material structures and biocomposite systems with a PLA matrix containing ground natural particulate waste fillers, buckwheat husks and egg shells. Waste fillers were used without difficult cleaning operations to describe the effect of the raw waste material on PLA. Biocomposites with raw waste materials are increasingly coming to the forefront in car interiors and packaging products. The prepared material systems were exposed to controlled climatic ageing simulating long-term solar radiation and cyclic outdoor conditions. The degradation of the biocomposite systems was evaluated via thermal (differential scanning calorimetry) and mechanical properties (tensile and flexural tests, Charpy impact toughness). In addition to evaluating the degradation of the material structures using standardized tests, the influence and effect of controlled climatic ageing was visually assessed using SEM images (electron microscopy) of the surfaces and fracture surfaces of the test specimens.

2.
Materials (Basel) ; 15(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36556716

ABSTRACT

In the context of today's needs for environmental sustainability, it is important to develop new materials that are based on renewable resources and biodegrade at the end of their life. Bioplastics reinforced by agricultural waste have the potential to cause a revolution in many industrial applications. This paper reports the physical properties and crystallization kinetics of biocomposite films based on poly(L-lactic acid) (PLLA) and 10 wt.% of spent coffee grounds (SCG). To enhance adhesion between the PLLA matrix and SCG particles, a compatibilizing agent based on itaconic anhydride (IA)-grafted PLLA (PLLA-g-IA) was prepared by reactive extrusion using dicumyl peroxide (DCP). Furthermore, due to the intended application of the film in the packaging industry, the organic plasticizer acetyl tributyl citrate (ATBC) is used to improve processing and increase ductility. The crystallization behavior and thermal properties were observed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Crystallinity degree increased from 3,5 (neat PLLA) up to 48% (PLLA/PLLA-g-IA/ATBC/SCG) at the highest cooling rate. The physical properties were evaluated by tensile testing and dynamic mechanical analysis (DMA). The combination of the compatibilizer, SCG, and ATBC led to a synergistic effect that positively influenced the supramolecular structure, internal damping, and overall ductility of the composite films.

3.
Polymers (Basel) ; 14(4)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35215751

ABSTRACT

The biodegradation of polyhydroxybutyrate-co-hydroxyvalerate (PHBV) ternary biocomposites containing nature-based plasticizer acetyl tributyl citrate (ATBC), heterogeneous nucleation agents-calcium carbonate (CaCO3) and spray-dried lignin-coated cellulose nanocrystals (L-CNC)-in vermicomposting, freshwater biotope, and thermophilic composting have been studied. The degree of disintegration, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and the evaluation of surface images taken by scanning electron microscopy (SEM) were conducted for the determination influence of different environments and additives on the biodegradation of PHBV. Furthermore, the method adapted from ISO 14855-1 standard was used for thermophilic composting. It is a method based on the measurement of the amount of carbon dioxide evolved during microbial degradation. The highest biodegradation rate was observed in the thermophilic condition of composting. The biodegradation level of all PHBV-based samples was, after 90 days, higher than 90%. Different mechanisms of degradation and consequently different degradation rate were evaluated in vermicomposting and freshwater biotope. The surface enzymatic degradation, observed during the vermicomposting process, showed slightly higher biodegradation potential than the hydrolytic attack of freshwater biotope. The application of ATBC plasticizers in the PHBV matrix caused an increase in biodegradation rate in all environments. However, the highest biodegradation rate was achieved for ternary PHBV biocomposites containing 10 wt. % of ATBC and 10 wt. % of CaCO3. A considerable increase in the degree of disintegration was evaluated, even in freshwater biotope. Furthermore, the slight inhibition effect of L-CNC on the biodegradation process of ternary PHBV/ATBC/L-CNC could be stated.

4.
Polymers (Basel) ; 15(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36616489

ABSTRACT

The overall performance of plasticizers on common mechanical and physical properties, as well as on the processability of polylactic acid (PLA) films, is well-explored. However, the influence of plasticizers on biodegradation is still in its infancy. In this study, the influence of natural-based dicarboxylic acid-based ester plasticizers (MC2178 and MC2192), acetyl tributyl citrate (ATBC Citroflex A4), and polyethylene glycol (PEG 400) on the biodegradation of extruded PLA films was evaluated. Furthermore, the influence of accelerated ageing on the performance properties and biodegradation of films was further investigated. The biodegradation of films was determined under controlled thermophilic composting conditions (ISO 14855-1). Apart from respirometry, an evaluation of the degree of disintegration, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) of film surfaces was conducted. The influence of melt-processing with plasticizers has a significant effect on structural changes. Especially, the degree of crystallinity has been found to be a major factor which affects the biodegradation rate. The lowest biodegradation rates have been evaluated for films plasticized with PEG 400. These lower molecular weight plasticizers enhanced the crystallinity degrees of the PLA phase due to an increase in chain mobility. On the contrary, the highest biodegradation rate was found for films plasticized with MC2192, which has a higher molecular weight and evoked minimal structural changes of the PLA. From the evaluated results, it could also be stated that migration of plasticizers, physical ageing, and chain scission of films prompted by ageing significantly influenced both the mechanical and thermal properties, as well as the biodegradation rate. Therefore, the ageing of parts has to be taken into consideration for the proper evolution of the biodegradation of plasticized PLA and their applications.

5.
Polymers (Basel) ; 13(19)2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34641213

ABSTRACT

The physical properties and non-isothermal melt- and cold-crystallisation kinetics of poly (l-lactic acid) (PLLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biobased polymers reprocessed by mechanical milling of moulded specimens and followed injection moulding with up to seven recycling cycles are investigated. Non-isothermal crystallisation kinetics are evaluated by the half-time of crystallisation and a procedure based on the mathematical treatment of DSC cumulative crystallisation curves at their inflection point (Kratochvil-Kelnar method). Thermomechanical recycling of PLLA raised structural changes that resulted in an increase in melt flow properties by up to six times, a decrease in the thermal stability by up to 80 °C, a reduction in the melt half-time crystallisation by up to about 40%, an increase in the melt crystallisation start temperature, and an increase in the maximum melt crystallisation rate (up to 2.7 times). Furthermore, reprocessing after the first recycling cycle caused the elimination of cold crystallisation when cooling at a slow rate. These structural changes also lowered the cold crystallisation temperature without impacting the maximum cold crystallisation rate. The structural changes of reprocessed PHBV had no significant effect on the non-isothermal crystallisation kinetics of this material. Additionally, the thermomechanical behaviour of reprocessed PHBV indicates that the technological waste of this biopolymer is suitable for recycling as a reusable additive to the virgin polymer matrix. In the case of reprocessed PLLA, on the other hand, a significant decrease in tensile and flexural strength (by 22% and 46%, respectively) was detected, which reflected changes within the biobased polymer structure. Apart from the elastic modulus, all the other thermomechanical properties of PLLA dropped down with an increasing level of recycling.

6.
Polymers (Basel) ; 13(4)2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33669420

ABSTRACT

The influence of additives such as natural-based plasticiser acetyl tributyl citrate (ATBC), CaCO3 and lignin-coated cellulose nanocrystals (L-CNC) on the biodegradation of polylactic acid (PLA) biocomposites was studied by monitoring microbial metabolic activity through respirometry. Ternary biocomposites and control samples were processed by a twin-screw extruder equipped with a flat film die. Commonly available compost was used for the determination of the ultimate aerobic biodegradability of PLA biocomposites under controlled composting conditions (ISO 14855-1). In addition, the hydro-degradability of prepared films in a freshwater biotope was analysed. To determine the efficiency of hydro-degradation, qualitative analyses (SEM, DSC, TGA and FTIR) were conducted. The results showed obvious differences in the degradation rate of PLA biocomposites. The application of ATBC at 10 wt.% loading increased the biodegradation rate of PLA. The addition of 10 wt.% of CaCO3 into the plasticised PLA matrix ensured an even higher degradation rate at aerobic thermophilic composting conditions. In such samples (PLA/ATBC/CaCO3), 94% biodegradation in 60 days was observed. In contrast, neat PLA exposed to the same conditions achieved only 16% biodegradation. Slightly inhibited microorganism activity was also observed for ternary PLA biocomposites containing L-CNC (1 wt.% loading). The results of qualitative analyses of degradation in a freshwater biotope confirmed increased biodegradation potential of ternary biocomposites containing both CaCO3 and ATBC. Significant differences in the chemical and structural compositions of PLA biocomposites were found in the evaluated period of three months.

7.
Polymers (Basel) ; 12(12)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339313

ABSTRACT

Recently, polymers have become the fastest growing and most widely used material in a huge number of applications in almost all areas of industry. In addition to standard polymer composites with synthetic matrices, biopolymer composites based on PLA and PHB matrices filled with fibers of plant origin are now increasingly being used in selected advanced industrial applications. The article deals with the evaluation of the influence and effect of the type of surface modification of cellulose fibers using physical methods (low-temperature plasma and ozone application) and chemical methods (acetylation) on the final properties of biopolymer composites. In addition to the surface modification of natural fibers, an additional modification of biocomposite structural systems by radiation crosslinking using gamma radiation was also used. The components of the biopolymer composite were a matrix of PLA and PHBV and the filler was natural cellulose fibers in a constant percentage volume of 20%. Test specimens were made from compounds of prepared biopolymer structures, on which selected tests had been performed to evaluate the properties and mechanical characterization of biopolymer composites. Electron microscopy was used to evaluate the failure and characterization of fracture surfaces of biocomposites.

8.
Waste Manag ; 97: 71-81, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31447029

ABSTRACT

The effect of recycling on the thermo-mechanical and water absorption behavior of polypropylene (PP)/sisal fiber and polylactic acid (PLA)/sisal fiber composites were studied. The PP-based non-biodegradable composites and PLA-based biodegradable composites were recycled for four times. The effect of recycling was determined by examining the morphology, thermo-mechanical properties, and water absorption behavior and the obtained results were compared. The results showed that the incorporation of sisal fibers in the PP and PLA matrix enhances the tensile modulus and percentage crystallinity of the composites. The tensile strength and modulus of the sisal fiber reinforced PP composites were not affected with recycling. Even though the tensile properties of PLA and PLA/sisal fiber reinforced composites are superior to PP and PP/sisal fiber composites, the PLA-based composites show a dramatic decrease in tensile strength and modulus after the first recycling due to the degradation of the polymer. The thermal stability of the PP/sisal fiber composites was not affected by the repeated recycling process. On the other hand, the PLA-based composites with higher sisal fiber content show a bit lower thermal stability after recycling. The PP-based composites show fluctuations in percentage crystallinity with recycling. On the other hand, a remarkable increase in percentage crystallinity for PLA and PLA-based composites was observed with increasing recycling times. Water diffusion study divulges that the diffusion of water into the polymer composites was reduced with recycling, irrespective of the polymer matrix.


Subject(s)
Polypropylenes , Water , Polyesters , Recycling
SELECTION OF CITATIONS
SEARCH DETAIL
...