Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Front Pharmacol ; 14: 1092476, 2023.
Article in English | MEDLINE | ID: mdl-36794273

ABSTRACT

Introduction: Long-term proton pump inhibitor (PPI) use has been associated with hypomagnesemia. It is unknown how frequently PPI use is implicated in patients with severe hypomagnesemia, and its clinical course or risk factors. Methods: All patients with severe hypomagnesemia from 2013 to 2016 in a tertiary center were assessed for likelihood of PPI-related hypomagnesemia using Naranjo algorithm, and we described the clinical course. The clinical characteristics of each case of PPI-related severe hypomagnesemia was compared with three controls on long-term PPI without hypomagnesemia, to assess for risk factors of developing severe hypomagnesemia. Results: Amongst 53,149 patients with serum magnesium measurements, 360 patients had severe hypomagnesemia (<0.4 mmol/L). 189 of 360 (52.5%) patients had at least possible PPI-related hypomagnesemia (128 possible, 59 probable, two definite). 49 of 189 (24.7%) patients had no other etiology for hypomagnesemia. PPI was stopped in 43 (22.8%) patients. Seventy (37.0%) patients had no indication for long-term PPI use. Hypomagnesemia resolved in most patients after supplementation, but recurrence was higher in patients who continued PPI, 69.7% versus 35.7%, p = 0.009. On multivariate analysis, risk factors for hypomagnesemia were female gender (OR 1.73; 95% CI: 1.17-2.57), diabetes mellitus (OR, 4.62; 95% CI: 3.05-7.00), low BMI (OR, 0.90; 95% CI: 0.86-0.94), high-dose PPI (OR, 1.96; 95% CI: 1.29-2.98), renal impairment (OR, 3.85; 95% CI: 2.58-5.75), and diuretic use (OR, 1.68; 95% CI: 1.09-2.61). Conclusion: In patients with severe hypomagnesemia, clinicians should consider the possibility of PPI-related hypomagnesemia and re-examine the indication for continued PPI use, or consider a lower dose.

2.
J Biosci ; 462021.
Article in English | MEDLINE | ID: mdl-34475316

ABSTRACT

Psoriasis is a chronic skin disease characterized by thickening and disorganization of the skin's protective barrier. Although current models replicate some aspects of the disease, development of therapeutic strategies have been hindered by absence of more relevant models. This study aimed to develop and characterize an in vitro psoriatic human skin equivalent (HSE) using human keratinocytes HaCat cell line grown on fibroblasts-derived matrices (FDM). The constructed HSEs were treated with cytokines (IL-1α, TNF-α, IL-6, and IL22) to allow controlled induction of psoriasis-associated features. Histological stainings showed that FDMHSE composed of a fully differentiated epidermis and fibroblast-populated dermis comparable to native skin and rat tail collagen-HSE. Hyperproliferation (CK16 and Ki67) and inflammatory markers (TNF-α and IL-6) expression were significantly enhanced in the cytokine-induced FDM- and rat tail collagen HSEs compared to non-treated HSE counterparts. The characteristics were in line with those observed in psoriasis punch biopsies. Treatment with all-trans retinoic acid (ATRA) has shown to suppress these effects, where HSE models treated with both ATRA and cytokines exhibit histological characteristics, hyperproliferation and differentiation markers expression like non-treated control HSEs. Cytokine-induced FDM-HSE, constructed entirely from human cell lines, provides an excellent opportunity for psoriasis research and testing new therapeutics.


Subject(s)
Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cytokines/pharmacology , Fibroblasts/drug effects , Psoriasis/drug therapy , Cell Line , Humans , Keratolytic Agents/pharmacology , Tretinoin/pharmacology
3.
Langmuir ; 36(8): 2030-2036, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32091913

ABSTRACT

Albumin molecules are extensively used as biocompatible coatings, and poly(ethylene glycol) (PEG) materials are widely used for antifouling. PEG materials have excellent antifouling property because of their strong surface hydration. Our previous research indicates that hydration at the PEG/bovine serum albumin solution interface is stronger than that at the PEG/water interface. This research shows that this observation is general for different types of albumin molecules. Different albumins including bovine, porcine, rat, rabbit, and sheep serum albumins were studied in this research. It was found that the hydration at the PEG methacrylate (pOEGMA)/albumin solution interface is always stronger than that at the pOEGMA/water interface. Here, we define "strong interfacial hydration" as "ordered strongly hydrogen-bonded interfacial water". We believe that such a strong hydration is because of the strong hydration on the albumin surface, leading to its biocompatible property. All of the albumin molecules demonstrated stronger hydration on the pOEGMA surface compared to other protein molecules such as lysozyme and fibrinogen. The strong hydration on albumin molecules is related to the high surface coverage of glutamic acid and lysine with similar amounts.


Subject(s)
Polyethylene Glycols , Serum Albumin, Bovine , Adsorption , Animals , Cattle , Methacrylates , Muramidase , Rabbits , Rats , Sheep , Surface Properties , Swine , Water
4.
Chem Sci ; 11(38): 10367-10377, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-34094298

ABSTRACT

Antifouling properties of materials play crucial roles in many important applications such as biomedical implants, marine antifouling coatings, biosensing, and membranes for separation. Poly(ethylene glycol) (or PEG) containing polymers and zwitterionic polymers have been shown to be excellent antifouling materials. It is believed that their outstanding antifouling activity comes from their strong surface hydration. On the other hand, it is difficult to develop underwater glues, although adhesives with strong adhesion in a dry environment are widely available. This is related to dehydration, which is important for adhesion for many cases while water is the enemy of adhesion. In this research, we applied sum frequency generation (SFG) vibrational spectroscopy to investigate buried interfaces between mussel adhesive plaques and a variety of materials including antifouling polymers and control samples, supplemented by studies on marine animal (mussel) behavior and adhesion measurements. It was found that PEG containing polymers and zwitterionic polymers have very strong surface hydration in an aqueous environment, which is the key for their excellent antifouling performance. Because of the strong surface hydration, mussels do not settle on these surfaces even after binding to the surfaces with rubber bands. For control samples, SFG results indicate that their surface hydration is much weaker, and therefore mussels can generate adhesives to displace water to cause dehydration at the interface. Because of the dehydration, mussels can foul on the surfaces of these control materials. Our experiments also showed that if mussels were forced to deposit adhesives onto the PEG containing polymers and zwitterionic polymers, interfacial dehydration did not occur. However, even with the strong interfacial hydration, strong adhesion between mussel adhesives and antifouling polymer surfaces was detected, showing that under certain circumstances, interfacial water could enhance the interfacial bio-adhesion.

5.
Langmuir ; 35(5): 1327-1334, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30457875

ABSTRACT

Nonfouling zwitterionic polymers have wide applications ranging from the naval industry to biomedical engineering. Strong hydration at polymer surfaces has been proven to be crucial to their nonfouling property, but the absolute orientations of water molecules on the polymers and the competition between water and salt binding have not been elucidated. In this work, the absolute orientations of water molecules on two zwitterionic polymer brushes, poly(carboxybetaine methacrylate) (pCBMA) and poly(sulfobetaine methacrylate) (pSBMA), were measured using regular and phase-sensitive sum frequency generation (SFG) vibrational spectroscopy. The pH-dependent studies in a pH range from 2 to 12 showed that at a pH of 7, the water absolute orientations are different on the pCBMS and pSBMA surfaces. Phase-sensitive SFG studies confirmed the results obtained from the pH-dependent measurements. Salt effects on the hydration of zwitterionic polymers were examined as a function of time, which indicated that the pCBMA surface and the associated interfacial water exhibit a slow restructuring process after salt binding (likely due to the strong binding of pCBMA with water), whereas the surface of pSBMA and the associated water have a fast change after salt binding.

6.
Plant Cell ; 30(10): 2286-2307, 2018 10.
Article in English | MEDLINE | ID: mdl-30309900

ABSTRACT

Sorghum (Sorghum bicolor) is the fifth most popular crop worldwide and a C4 model plant. Domesticated sorghum comes in many forms, including sweet cultivars with juicy stems and grain sorghum with dry, pithy stems at maturity. The Dry locus, which controls the pithy/juicy stem trait, was discovered over a century ago. Here, we found that Dry gene encodes a plant-specific NAC transcription factor. Dry was either deleted or acquired loss-of-function mutations in sweet sorghum, resulting in cell collapse and altered secondary cell wall composition in the stem. Twenty-three Dry ancestral haplotypes, all with dry, pithy stems, were found among wild sorghum and wild sorghum relatives. Two of the haplotypes were detected in domesticated landraces, with four additional dry haplotypes with juicy stems detected in improved lines. These results imply that selection for Dry gene mutations was a major step leading to the origin of sweet sorghum. The Dry gene is conserved in major cereals; fine-tuning its regulatory network could provide a molecular tool to control crop stem texture.


Subject(s)
Genetic Variation , Plant Proteins/genetics , Sorghum/genetics , Transcription Factors/genetics , Cell Wall/genetics , Cell Wall/metabolism , Edible Grain/genetics , Gene Expression Regulation, Plant , Genome, Plant , Genome-Wide Association Study , Haplotypes , Plant Proteins/metabolism , Plant Stems/physiology , Selection, Genetic , Sorghum/physiology
7.
Langmuir ; 34(22): 6538-6545, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29733605

ABSTRACT

Interfacial water structure on a polymer surface in water (or surface hydration) is related to the antifouling activity of the polymer. Zwitterionic polymer materials exhibit excellent antifouling activity due to their strong surface hydration. It was proposed to replace zwitterionic polymers using mixed charged polymers because it is much easier to prepare mixed charged polymer samples with much lower costs. In this study, using sum frequency generation (SFG) vibrational spectroscopy, we investigated interfacial water structures on mixed charged polymer surfaces in water and how such structures change while being exposed to salt solutions and protein solutions. The 1:1 mixed charged polymer exhibits excellent antifouling property whereas other mixed charged polymers with different ratios of the positive/negative charges do not. It was found that on the 1:1 mixed charged polymer surface, SFG water signal is dominated by the contribution of the strongly hydrogen bonded water molecules, indicating strong hydration of the polymer surface. The responses of the 1:1 mixed charged polymer surface to salt solutions are similar to those of zwitterionic polymers. Interestingly, exposure to high concentrations of salt solutions leads to stronger hydration of the 1:1 mixed charged polymer surface after replacing the salt solution with water. Protein molecules do not substantially perturb the interfacial water structure on the 1:1 mixed charged polymer surface and do not adsorb to the surface, showing that this mixed charged polymer is an excellent antifouling material.

8.
Acta Biomater ; 40: 6-15, 2016 08.
Article in English | MEDLINE | ID: mdl-26923530

ABSTRACT

UNLABELLED: Antifouling polymers have wide applications in biomedical engineering and marine industry. Recently, zwitterionic materials have been reported as promising candidates for antifouling applications, while strong hydration is believed to be the key antifouling mechanism. Zwitterionic materials can be designed with various molecular structures, which affect their hydration and antifouling performance. Although strong hydration has been proposed to occur at the material surfaces, probing the solid material/water interfaces is challenging with traditional analytical techniques. Here in this review, we will review our studies on surface hydration of zwitterionic materials and other antifouling materials by using sum frequency generation (SFG) vibrational spectroscopy, which provides molecular understanding of the water structures at various material surfaces. The materials studied include zwitterionic polymer brushes with different molecular structures, amphiphilic polymers with zwitterionic groups, uncharged hydrophilic polymer brushes, amphiphilic polypeptoids, and widely used antifouling material poly(ethylene glycol). We will compare the differences among zwitterionic materials with various molecular structures as well as the differences between antifouling materials and fouling surfaces of control samples. We will also discuss the effects of pH and biological molecules like proteins on the surface hydration of the zwitterionic materials. Using SFG spectroscopy, we have measured the hydration layers of antifouling materials and found that strong hydrogen bonds are key to the formation of strong hydration layers preventing protein fouling at the polymer interfaces. STATEMENT OF SIGNIFICANCE: Antifouling polymers have wide applications in biomedical engineering and marine industry. Recently, zwitterionic materials have been reported as promising candidates for antifouling applications, while strong hydration is believed to be the key antifouling mechanism. However, zwitterionic materials can be designed with various molecular structures, which affect their hydration and antifouling performance. Moreover, although strong hydration has been proposed to occur at the material surfaces, probing the solid material/water interfaces is challenging with traditional analytical techniques. Here in this manuscript, we will review our studies on surface hydration of zwitterionic materials and other antifouling materials by using sum frequency generation (SFG) vibrational spectroscopy, which provides molecular understanding of the water structures at various material surfaces. The materials studied include zwitterionic polymer brushes with different molecular structures, amphiphilic polymers with zwitterionic groups, uncharged hydrophilic polymer brushes, amphiphilic polypeptoids, and widely used antifouling material poly(ethylene glycol). We will compare the differences among zwitterionic materials with various molecular structures as well as the differences between antifouling materials and fouling surfaces of control samples. We will also discuss the effects of pH and biological molecules like proteins on the surface hydration of the zwitterionic materials. All the SFG results indicate that strongly hydrogen-bonded water at the materials' surfaces (strong surface hydration) is closely correlated to the good antifouling properties of the materials. This review will be widely interested by readers of Acta Biomaterialia and will impact many different research fields in chemistry, materials, engineering, and beyond.


Subject(s)
Polymers/chemistry , Animals , Humans , Hydrophobic and Hydrophilic Interactions
9.
Langmuir ; 31(34): 9306-11, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26245923

ABSTRACT

Amphiphilic polypeptoids can be designed with specific sequences of hydrophilic and hydrophobic units, which determine their surface properties for antifouling/fouling release purposes. Although the sequence-dependent surface structures of polypeptoids have been extensively investigated, e.g., with X-ray spectroscopy, their molecular structures under the aqueous conditions relevant to marine fouling have not been studied. In this work, we applied sum frequency generation (SFG) vibrational spectroscopy to study the surface structures and hydration of a series of amphiphilic polypeptoid coatings with different sequences in air and water. SFG spectra, in agreement with X-ray spectroscopy studies, revealed that the surface coverage of the hydrophilic N-(2-methoxyethyl)glycine (Nme) units in air is affected by both the number and position of the hydrophobic N-(heptafluorobutyl)glycine (NF) units in the peptoid chain and is negatively correlated with the surface concentration of the fluorine element. Our ability to probe the SFG signals of water molecules at the peptoid surface provides new information on the hydrated film properties. From these SFG signals and the time evolution of water contact angles on the polymers, we see that the hydrated film properties are also dependent upon the peptoid sequence. This work indicates that the surface presence of the Nme groups and the ability of the polymers to order and strongly hydrogen bond with interfacial water molecules determine their antifouling properties, whereas the surface restructuring rate upon contact with water affects their fouling release behaviors.


Subject(s)
Biofouling/prevention & control , Peptoids/chemistry , Surface-Active Agents/chemistry , Molecular Structure , Surface Properties , Water/chemistry
10.
ACS Appl Mater Interfaces ; 7(30): 16881-8, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26159055

ABSTRACT

Zwitterionic polymers and poly(ethylene glycol) (PEG) have been reported as promising nonfouling materials, and strong surface hydration has been proposed as a significant contributor to the nonfouling mechanism. Better understanding of the similarity and difference between these two types of materials in terms of hydration and protein interaction will benefit the design of new and effective nonfouling materials. In this study, sum frequency generation (SFG) vibrational spectroscopy was applied for in situ and real-time assessment of the surface hydration of the sulfobetaine methacrylate (SBMA) and oligo(ethylene glycol) methacrylate (OEGMA) polymer brushes, denoted as pSBMA and pOEGMA, in contact with proteins. Whereas a majority of strongly hydrogen-bonded water was observed at both pSBMA and pOEGMA surfaces, upon contact with proteins, the surface hydration of pSBMA remained unaffected, but the water ordering at the pOEGMA surface was disturbed. The effects of free sulfobetaine, free PEG chains with two different molecular weights, and PEG coated gold nanoparticles on the surface hydration of proteins were investigated. The results indicated that free sulfobetaine could strengthen the protein hydration layer, but free PEG chains greatly disrupt the protein hydration layer and likely directly interact with the protein molecules. In contrast to free PEG, the PEG chains anchored on the nanoparticles behave similarly to the pOEGMA surface and could induce strong hydrogen bonding of the water molecules at the protein surfaces.


Subject(s)
Coated Materials, Biocompatible/chemistry , Polyethylene Glycols/chemistry , Proteins/chemistry , Water/chemistry , Adsorption , Ions , Materials Testing/methods , Protein Binding , Spectrum Analysis/methods , Wettability
11.
Angew Chem Int Ed Engl ; 54(16): 4851-6, 2015 Apr 13.
Article in English | MEDLINE | ID: mdl-25703598

ABSTRACT

Surface wetting on polyelectrolyte multilayers (PEMs), prepared by alternating deposition of polydiallyldimethylammonium chloride (PDDA) and poly(styrene sulfonate) (PSS), was investigated mainly in water-solid-oil systems. The surface-wetting behavior of as-prepared PEMs was well correlated to the molecular structures of the uncompensated ionic groups on the PEMs as revealed by sum frequency generation vibrational and X-ray photoelectron spectroscopies. The orientation change of the benzenesulfonate groups on the PSS-capped surfaces causes poor water wetting in oil or air and negligible oil wetting in water, while the orientation change of the quaternized pyrrolidine rings on the PDDA-capped surfaces hardly affects their wetting behavior. The underwater oil repellency of PSS-capped PEMs was successfully harnessed to manufacture highly efficient filters for oil-water separation at high flux.


Subject(s)
Electrolytes/chemistry , Oils/chemistry , Water/chemistry , Hydrophobic and Hydrophilic Interactions , Ions/chemistry , Oil and Gas Industry , Photoelectron Spectroscopy , Polyethylenes/chemistry , Polystyrenes/chemistry , Quaternary Ammonium Compounds/chemistry , Surface Properties
12.
Thromb Haemost ; 112(4): 700-15, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25008365

ABSTRACT

Snake venoms are excellent sources of pharmacologically active proteins and peptides, and hence are potential sources of leads for drug developments. It has been previously established that krait (Bungarus genus) venoms contain mainly neurotoxins. A screening for anticoagulants showed that Bungarus fasciatus venom exhibits potent anticoagulant effect in standard clotting assays. Through sequential fractionation of the venom by size exclusion and high performance liquid chromatographies, coupled with functional screening for anticoagulant activities, we have isolated and purified two anticoagulant proteins, termed BF-AC1 (Bungarus fasciatusanticoagulant 1) and BF-AC2. They have potent inhibitory activities (IC50 of 10 nM) on the extrinsic tenase complex. Structurally, these proteins each has two subunits covalently held together by disulfide bond(s). The N-terminal sequences of the individual subunits of BF-AC1 and BF-AC2 showed that the larger subunit is homologous to phospholipase A2, while the smaller subunit is homologous to Kunitz type serine proteinase inhibitor. Functionally, in addition to their anticoagulant activity, these proteins showed presynaptic neurotoxic effects in both in vivo and ex vivo experiments. Thus, BF-AC1 and BF-AC2 are structurally and functionally similar to ß-bungarotoxins, a class of neurotoxins. The enzymatic activity of phospholipase A2 subunit plays a significant role in the anticoagulant activities. This is the first report on the anticoagulant activity ofß-bungarotoxins and these results expand on the existing catalogue of haemostatically active snake venom proteins.


Subject(s)
Anticoagulants/chemistry , Bungarus , Venoms/chemistry , Amino Acid Sequence , Animals , Bungarotoxins/chemistry , Chromatography , Cysteine Endopeptidases/chemistry , Disulfides/chemistry , Dithiothreitol/chemistry , Humans , Inhibitory Concentration 50 , Molecular Sequence Data , Neoplasm Proteins/chemistry , Neurotoxins/chemistry , Partial Thromboplastin Time , Phospholipases A2/chemistry , Proteins/chemistry , Prothrombin Time , Sequence Homology, Amino Acid , Thrombin/chemistry
13.
Opt Lett ; 39(9): 2715-8, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24784085

ABSTRACT

A sum frequency generation (SFG) vibrational micro-spectroscopy system was developed to examine buried heterogeneous biointerfaces. A compact optical microscope was constructed with total-internal reflection (TIR) SFG geometry to monitor the tightly focused SFG laser spots on interfaces, providing the capability of selectively probing different regions on heterogeneous biointerfaces. The TIR configuration ensures and enhances the SFG signal generated only from the sample/substrate interfacial area. As an example for possible applications in biointerfaces studies, the system was used to probe and compare buried interfacial structures of different biological samples attached to underwater surfaces. We studied the interface of a single mouse oocyte on a silica prism to demonstrate the feasibility of tracing and studying a single live cell and substrate interface using SFG. We also examined the interface between a marine mussel adhesive plaque and a CaF2 substrate, showing the removal of interface-bonded water molecules. This work also paves the way for future integration of other microscopic techniques such as TIR-fluorescence microscopy or nonlinear optical imaging with SFG spectroscopy for multimodal surface or interface studies.


Subject(s)
Adhesives/chemistry , Bivalvia/chemistry , Body Water/chemistry , Oocytes/chemistry , Spectrum Analysis/instrumentation , Animals , Cells, Cultured , Equipment Design , Equipment Failure Analysis , Feasibility Studies , Immersion , Mice , Oocytes/cytology , Vibration
14.
Langmuir ; 29(22): 6659-64, 2013 Jun 04.
Article in English | MEDLINE | ID: mdl-23663073

ABSTRACT

Marine mussels deposit adhesive proteins containing 3,4-dihydroxyphenylalanine (DOPA) to attach themselves to different surfaces. Isolating such proteins from biological sources for adhesion purposes tends to be challenging. Recently, a simplified synthetic adhesive polymer, poly[(3,4-dihydroxystyrene)-co-styrene] (PDHSS), was developed to mimic DOPA-containing proteins. The pendant catechol group in this polymer provides cross-linking and adhesion much like mussel proteins do. In this work, sum frequency generation (SFG) vibrational spectroscopy was applied to reveal the structures of this DOPA-inspired polymer at air, water, and polymer interfaces. SFG spectroscopy results showed that when underwater, the catechol rings and the quinone rings were ordered, ready to adhere to surfaces. At the hydrophobic polystyrene interface, benzene π-π stacking is likely the adhesive force, whereas at the hydrophilic poly(allylamine) interface, primary amines may form hydrogen bonds with catechol or react with quinones for adhesion.


Subject(s)
Adhesives/chemistry , Biocompatible Materials/chemistry , Polystyrenes/chemistry , Air , Animals , Bivalvia , Dihydroxyphenylalanine/chemistry , Hydrophobic and Hydrophilic Interactions , Molecular Mimicry , Polyamines/chemistry , Surface Properties , Water
15.
Langmuir ; 29(9): 2897-905, 2013 Mar 05.
Article in English | MEDLINE | ID: mdl-23394402

ABSTRACT

Poly(dimethylsiloxane) (PDMS) materials have been extensively shown to function as excellent fouling-release (FR) coatings in the marine environment. The incorporation of biocide moieties, such as quaternary ammonium salts (QAS), can impart additional antibiofouling properties to PDMS-based FR coating systems. In this study, the molecular surface structures of two different types of QAS-incorporated PDMS systems were investigated in different chemical environments using sum frequency generation vibrational spectroscopy (SFG). Specifically, a series of PDMS coatings containing either a QAS with a single ammonium salt group per molecule or a quaternary ammonium-functionalized polyhedral oligomeric silsesquioxane (Q-POSS) were measured with SFG in air, water, and artificial seawater (ASW) to investigate the relationships between the interfacial surface structures of these materials and their antifouling properties. Although previous studies have shown that the above-mentioned materials are promising contact-active antifouling coatings, slight variations of the QAS structure can lead to substantial differences in the antifouling performance. Indeed, the SFG results presented here indicated that the surface structures of these materials depend on several factors, such as the extent of quaternization, the molecular weight of the PDMS component, and the functional groups of the QAS used for incorporation into the PDMS matrix. It was concluded that in aqueous environments a lower extent of Q-POSS quaternization and the use of ethoxy (instead of methoxy) functional groups for QAS incorporation facilitated the extension of the alkyl chains away from the nitrogen atom of the QAS on the surface. The SFG results correlated well with the antifouling activity studies that indicated that the coatings exhibiting a lower concentration of longer alkyl chains protruding out of the surface can neutralize microorganisms more effectively, ultimately leading to better antifouling performance. Furthermore, the results of this study provide additional evidence that incorporated QAS exert their antimicrobial activity through a two-step interaction. The first step is the adsorption of the bacteria on the surface as a result of the electrostatic attraction between the negatively charged microorganisms and the positively charged QAS nitrogen atoms on the surface. The second step is the disruption of the cell membranes by the penetration of the QAS long, extended alkyl chains.


Subject(s)
Biofouling/prevention & control , Dimethylpolysiloxanes/chemistry , Dimethylpolysiloxanes/pharmacology , Drug Design , Quaternary Ammonium Compounds/chemistry , Salts/chemistry , Air , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Silanes/chemistry , Structure-Activity Relationship , Surface Properties , Water/chemistry
16.
ACS Macro Lett ; 2(11): 1011-1015, 2013 Nov 19.
Article in English | MEDLINE | ID: mdl-35581870

ABSTRACT

Antibiofouling materials have a wide range of applications in biomedical devices and marine coatings. Due to the amphiphilic nature of proteins and organisms, amphiphilic materials have been designed to resist their unspecific adsorption. Surface restructuring behavior of amphiphilic materials in water is believed to play a key role in the antibiofouling mechanisms. In this work, the surface structures of several amphiphilic polybetaine coatings in water have been probed in situ using sum frequency generation (SFG) vibrational spectroscopy. These are novel polybetaines constructed from functionalized polynorbornenes. The polybetaines with oligo(ethylene glycol) (OEG), octyl (C8), or fluorinated (F13) side chains exhibit different surface restructuring behaviors upon contacting water due to their different surface hydrophobicity. The OEG and C8 chains were present and ordered at the water interface, while the F13 chain withdrew from water. The hydrophilic betaine group extended into the water and formed hydrogen bonds with water molecules. The surface restructuring of these materials detected using SFG can be well correlated to their antibiofouling performance, providing an understanding of their antibiofouling mechanisms.

17.
Biosens Bioelectron ; 38(1): 421-4, 2012.
Article in English | MEDLINE | ID: mdl-22709935

ABSTRACT

A simple, rapid, and disposable immunosensor at screen printed carbon electrode (SPCE) was developed by using gold nanoparticles (AuNPs) labeled Staphylococcal protein A (Au-SPA) as the electrochemical tag for detection of lipoarabinomannan antibody (anti-LAM). The immunosensor as the disposable chip was prepared by immobilizing capture antigen on screen printed carbon working electrode by passive adsorption, and characterized with scanning electron microscopy. After binding with the anti-LAM for further capture of Au-SPA, AuNPs were introduced as an electrochemical tag by the eletrooxidation of AuNPs in 0.1M HCl to produce strong electroactive substance for signal amplification. Compared with the enzyme-based immunosensor, AuNPs as enzyme-free tag for signal amplification exhibited many advantages such as no requirement of deoxygenation, and high stability. Under optimal detection conditions and at a preoxidation potential of +1.3 V for 30s, this method achieved the linear concentration of anti-LAM from 15.6 to 1000 ng mL(-1) with a detection limit of 5.3 ng mL(-1). The immunosensor showed a good performance with high selectivity, acceptable stability, and simple operation, providing a promising application as an adjunctive tool in early tuberculosis diagnosis.


Subject(s)
Antibodies, Bacterial/analysis , Antigens, Bacterial/immunology , Biosensing Techniques/instrumentation , Immunoassay/instrumentation , Lipopolysaccharides/immunology , Mycobacterium/immunology , Adsorption , Animals , Antibodies, Bacterial/immunology , Biosensing Techniques/economics , Electrochemical Techniques/economics , Electrochemical Techniques/instrumentation , Gold/chemistry , Humans , Immobilized Proteins/chemistry , Immobilized Proteins/immunology , Immunoassay/economics , Metal Nanoparticles/chemistry , Mycobacterium/isolation & purification , Mycobacterium Infections/diagnosis , Mycobacterium Infections/immunology , Rabbits , Sensitivity and Specificity , Staphylococcal Protein A/chemistry , Staphylococcal Protein A/immunology
18.
Chemistry ; 18(16): 4994-8, 2012 Apr 16.
Article in English | MEDLINE | ID: mdl-22438025

ABSTRACT

This work designed a simple, sensitive, and low-cost immunosensor for the detection of protein marker by using a carbon sphere/gold nanoparticle (CNS/AuNP) composite as an electrochemical label. The nanoscale carbon spheres, prepared with a hydrothermal method by using glucose as raw material, were used to load AuNPs for labeling antibody by electrostatic interaction, which provided a feasible pathway for electron transfer due to the remarkable conductivity. The disposable immunosensor was constructed by coating a polyethylene glycol (PEG) film on a screen-printed carbon-working electrode and then immobilizing capture antibody on the film. With a sandwich-type immunoassay format, the analyte and then the CNS/AuNP-labeled antibody were successively bound to the immunosensor. The bound AuNPs were finally electro-oxidized in 0.1 M HCl to produce AuCl(4)(-) for differential pulse voltammetric (DPV) detection. The high-loading capability of AuNPs on CNS for the sandwich-type immunorecognition led to obvious signal amplification. By using human immunoglobulin G (IgG) as model target, the DPV signal of AuNPs after electro-oxidized at optimal potential of +1.40 V for 40 s showed a wide linear dependence on the logarithm of target concentration ranging from 10 pg mL(-1) to 10 ng mL(-1). The detection limit was around 9 pg mL(-1). The immunosensor showed excellent analytical performance with cost effectivity, good fabrication reproducibility, and acceptable precision and accuracy, providing significant potential application in clinical analysis.


Subject(s)
Electrochemistry/methods , Gold/chemistry , Immunoassay/methods , Immunoglobulin G/analysis , Immunoglobulin G/chemistry , Metal Nanoparticles/chemistry , Nanoparticles/chemistry , Electrodes , Humans , Oxidation-Reduction , Reproducibility of Results
19.
Ying Yong Sheng Tai Xue Bao ; 23(9): 2504-8, 2012 Sep.
Article in Chinese | MEDLINE | ID: mdl-23286008

ABSTRACT

Taking 3-year old potted 'Shuguang' nectarine (Prunus persica var. nectariana cv. Shuguang) as test material, this paper studied the effects of high temperature (50 degrees C, HT) and hydrogen cyanamide (HC) on the floral bud respiratory metabolism of the tree during its natural dormancy. Both HT and HC could break the natural dormancy of the tree, and lead to a significant decrease in the respiratory metabolism of floral buds for several hours. The main respiratory pathways, tricarboxylic acid cycle (TCA) and pentose phosphate pathway (PPP), were affected. For the buds not received dormancy-breaking treatments, both the TCA and the PPP decreased, while treating with HT and HC induced a rapid recovery of PPP after the early respiratory attenuation. HT also induced the recovery of TCA, but HC did not show this effect in 96 hours. Therefore, respiratory attenuation and the following PPP activation could be the important part in the floral bud respiratory mechanism of HT- and HC-induced dormancy release.


Subject(s)
Cyanamide/pharmacology , Flowers/physiology , Hot Temperature , Plant Dormancy/physiology , Prunus/physiology , Carbon Dioxide/metabolism , Flowers/metabolism , Oxygen/metabolism
20.
Biosens Bioelectron ; 27(1): 71-6, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21764292

ABSTRACT

A palladium nanoparticle decorated carbon nanotube was designed as a label for preparation of a highly sensitive disposable immunosensor. The immunosensor was constructed by assembling the capture antibody on gold nanoparticles decorated graphene nanosheets modified screen printed carbon working electrode. With a sandwich immunoassay mode, the palladium nanoparticle decorated carbon nanotubes were captured to the immunocomplex and showed strong electrocatalytic activity toward oxygen reduction. The use of carbon nanotube carrier offered a high amount of palladium nanoparticles on each immunoconjugate, hence amplified the detectable signal from the electro-reaction of dissolved oxygen. The graphene nanosheets and gold nanoparticles improved the electronic conductivity and the hydrophilicity of electrode surface for immobilization of the capture antibody, respectively. Under optimal conditions, a linear detection range from 50 pg/mL to 10 ng/mL and a limit of detection of 44 pg/mL (0.3 pM) were achieved for human IgG. Using dissolved oxygen as a signal reporter, the detection process avoided deoxygenation. The immunosensor showed acceptable stability, precision and accuracy, indicating potential applications in clinical diagnostics.


Subject(s)
Biosensing Techniques , Immunoassay , Metal Nanoparticles/chemistry , Nanotubes, Carbon/chemistry , Palladium/chemistry , Antibodies/chemistry , Catalysis , Gold/chemistry , Graphite/chemistry , Humans , Oxidation-Reduction , Oxygen/chemistry , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...