Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Anal Chem ; 95(19): 7715-7722, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37125992

ABSTRACT

The research of delayed fluorescence (DF) has been a hot topic in biological imaging. However, the development of analyte-triggered small molecule DF probes remains a considerable challenge. Herein a novel excited-state intramolecular proton transfer-delayed fluorescence (ESIPT-DF) approach to construct analyte-stimulated DF probes was reported. These new classes of ESIPT-DF luminophores were strategically designed and synthesized by incorporating 2-(2'-hydroxyphenyl)benzothiazole (HBT), a known ESIPT-based fluorophore, as acceptor with a series of classic donor moieties, which formed a correspondingly twisted donor-acceptor pair within each molecule. Thereinto, HBT-PXZ and HBT-PTZ exhibited significant ESIPT and DF characters with lifetimes of 5.37 and 3.65 µs in the solid state, respectively. Furthermore, a caged probe HBT-PXZ-Ga was developed by introducing a hydrophilic d-galactose group as the recognition unit specific for ß-galactosidase (ß-gal) and ESIPT-DF blocking agent and applied to investigate the influence of metal ions on ß-gal activity on the surface of Streptococcus pneumoniae as a convenient tool. This ESIPT-DF "turn-on" approach is easily adaptable for the measurement of many different analytes using only a predictable modification on the caged group without modification of the core structure.


Subject(s)
Fluorescent Dyes , Protons , Spectrometry, Fluorescence , Fluorescent Dyes/chemistry , Optical Imaging
2.
Appl Physiol Nutr Metab ; 46(11): 1378-1388, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34115947

ABSTRACT

Polyunsaturated fatty acids (PUFA)-derived bioactive lipid mediators called oxylipins have been shown to influence muscle growth, inflammation and repair in select muscles. Since individual oxylipins have varying effects and potencies, broad profiling in differing muscle types is required to further understand their overall effects. In addition, diet and sex are key determinants of oxylipin levels. Therefore, to provide comprehensive data on oxylipin profiles in rat soleus (SO), red gastrocnemius (RG), and white gastrocnemius (WG) muscles, female and male weanling Sprague-Dawley rats were provided control or experimental diets enriched in n-3 (ω-3) or n-6 (ω-6) PUFA for 6 weeks. Free oxylipin analysis by HPLC/MS/MS revealed that SO muscle had 25% more oxylipins and 4-13 times greater oxylipin mass than WG muscle. Dietary n-3 PUFA (α-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid) each increased n-3 oxylipins derived directly from their precursors and several that were not direct precursors, while reducing arachidonic acid derived oxylipins. Dietary linoleic acid had few effects on oxylipins. Oxylipins with a sex effect were higher in females in SO and RG. Oxylipins generally reflected the effects of diet and sex on PUFA, but there were exceptions. These fundamental oxylipin profile data provide groundwork knowledge and context for future research on muscle oxylipin functions. Novelty: Rat SO compared with RG and WG muscles have a higher number and greater mass of oxylipins. Oxylipins generally reflect diet effects on PUFA in all muscles, but there are notable exceptions. Oxylipins in SO and RG are higher in females.


Subject(s)
Dietary Fats/metabolism , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Oxylipins/metabolism , Age Factors , Animals , Female , Male , Random Allocation , Rats, Sprague-Dawley , Sex Characteristics
3.
Lipids ; 55(3): 261-270, 2020 05.
Article in English | MEDLINE | ID: mdl-32255511

ABSTRACT

As the largest secondary lymphoid organ, the spleen plays an important role in immune responses. The role of arachidonic acid (ARA) and its 20-carbon eicosanoids in modulating immune function has long been of interest. However, recent advances have enabled the identification of numerous other n-6 and n-3 polyunsaturated fatty acid (PUFA)-derived oxylipins. Here, we investigate the effects of diet and sex on the spleen nonesterified oxylipin profiles and phospholipid and neutral lipid PUFA composition in Sprague-Dawley rats supplemented with oils rich in α-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or linoleic acid. Dietary ALA, EPA, and DHA resulted in lower levels of ARA and ARA oxylipins. Oxylipins derived from other n-6 PUFA were also reduced despite no or opposite effect on their PUFA levels. Each diet also resulted in higher levels of oxylipins almost exclusively derived from the supplemented PUFA, despite PUFA in the same biosynthetic pathway also often being increased. Further, while oxylipin differences often reflected changes to phospholipid PUFA, there were instances where they corresponded more closely to changes in neutral lipid PUFA. With respect to sex effects, >50% of lipoxygenase ARA-derived oxylipins were higher in males in at least one diet group, while multiple DHA oxylipins were lower in males only in rats provided the DHA diet. This fundamental description of oxylipin composition in the spleen, including the influence of diet and sex and the relationship to PUFA composition, will help inform future studies examining the functions of these oxylipins under physiological and pathological conditions.


Subject(s)
Dietary Fats/administration & dosage , Fatty Acids, Omega-3/analysis , Fatty Acids, Omega-6/analysis , Oxylipins/analysis , Spleen/chemistry , Animals , Arachidonic Acid/analysis , Docosahexaenoic Acids/analysis , Eicosapentaenoic Acid/analysis , Female , Male , Phospholipids/analysis , Rats, Sprague-Dawley , Sex Characteristics , alpha-Linolenic Acid/analysis
4.
Talanta ; 205: 120133, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31450408

ABSTRACT

Timely and effective detection of bacterial pathogens is of great importance to reduce morbidity rates from bacterial infections. Recently, enzyme-activated fluorogenic probes, which invoke enzymatic catalysis to trigger fluorescence emission, have been superior sensors for bacterial infections needed for accurate diagnoses. Here, a fluorescent sensor for nitroreductase (NTR) detection is described. It is based on a cyanine fluorophore and utilizes photoinduced electron transfer to generate a rapid 10-fold fluorescence response after being catalytically reduced by NTR. It has enabled selective and sensitive visualization of NTR activity in vitro and in living bacterial pathogens. Thus, the probe has great potential to provide a rapid, noninvasive tool to diagnose infections and guide antimicrobial selection.


Subject(s)
Nitroreductases/metabolism , Optical Imaging , Photochemical Processes , Spectrometry, Fluorescence/instrumentation , Carbocyanines/chemistry , Electron Transport , Hydrogen-Ion Concentration , Methicillin-Resistant Staphylococcus aureus/metabolism , Nitroreductases/antagonists & inhibitors , Temperature
5.
Br J Nutr ; 122(3): 252-261, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31405389

ABSTRACT

Oxylipins are bioactive lipid mediators synthesised from PUFA. The most well-known oxylipins are the eicosanoids derived from arachidonic acid (ARA), and many of them influence cardiac physiology in health and disease. Oxylipins are also formed from other n-3 and n-6 PUFA such as α-linolenic acid (ALA), EPA, DHA and linoleic acid (LA), but fundamental data on the heart oxylipin profile, and the effect of diet and sex on this profile, are lacking. Therefore, weanling female and male Sprague-Dawley rats were given American Institute of Nutrition (AIN)-93G-based diets modified in oil composition to provide higher levels of ALA, EPA, DHA, LA and LA + ALA, compared with control diets. After 6 weeks, free oxylipins in rat hearts were increased primarily by their precursor PUFA, except for EPA oxylipins, which were increased not only by dietary EPA but also by dietary ALA or DHA. Dietary DHA had a greater effect than ALA or EPA on reducing ARA oxylipins. An exception to the dietary n-3 PUFA-lowering effects on ARA oxylipins was observed for several ARA-derived PG metabolites that were higher in rats given EPA diets. Higher dietary LA increased LA oxylipins, but it had no effect on ARA oxylipins. Overall, heart oxylipins were higher in female rats, but this depended on dietary treatment: the female oxylipin:male oxylipin ratio was higher in rats provided the ALA compared with the DHA diet, with other diet groups having ratios in between. In conclusion, individual PUFA and sex have unique and interactive effects on the rat heart free oxylipin profile.


Subject(s)
Animal Feed , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-6/administration & dosage , Myocardium/metabolism , Oxylipins/metabolism , Animals , Arachidonic Acid/administration & dosage , Docosahexaenoic Acids/administration & dosage , Eicosapentaenoic Acid/administration & dosage , Female , Heart/physiology , Linoleic Acid/administration & dosage , Lipid Metabolism , Male , Rats , Rats, Sprague-Dawley , Sex Factors , alpha-Linolenic Acid/administration & dosage
6.
Lipids ; 54(1): 67-80, 2019 01.
Article in English | MEDLINE | ID: mdl-30697757

ABSTRACT

Oxylipins are bioactive lipids formed by the monooxygenation of polyunsaturated fatty acids (PUFA). Eicosanoids derived from arachidonic acid (ARA) are the most well-studied class of oxylipins that influence brain functions in normal health and in disease. However, comprehensive profiling of brain oxylipins from other PUFA with differing functions, and the examination of the effects of dietary PUFA and sex differences in oxylipins are warranted. Therefore, female and male Sprague-Dawley rats were provided standard rodent diets that provided additional levels of the individual n-3 PUFA α-linolenic acid (ALA), eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), or the n-6 PUFA linoleic acid (LNA) alone or with ALA (LNA + ALA) compared to essential fatty acid-sufficient control diets. Oxylipins and PUFA were quantified in whole brains using HPLC-MS/MS and GC, respectively. Eighty-seven oxylipins were present at quantifiable levels: 51% and 17% of these were derived from ARA and DHA, respectively. At the mass level, ARA and DHA oxylipins comprised 81-90% and 6-12% of total oxylipins, while phospholipid ARA and DHA represented 25-35% and 49-62% of PUFA mass, respectively. Increasing dietary n-3 PUFA resulted in higher levels of oxylipins derived from their precursor PUFA; otherwise, the brain oxylipin profile was largely resistant to modulation by diet. Approximately 25% of oxylipins were higher in males, and this was largely unaffected by diet, further revealing a tight regulation of brain oxylipin levels. These fundamental data on brain oxylipin composition, diet effects, and sex differences will help guide future studies examining the functions of oxylipins in the brain.


Subject(s)
Brain/drug effects , Brain/metabolism , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-6/pharmacology , Fatty Acids, Unsaturated/metabolism , Oxylipins/metabolism , Animals , Docosahexaenoic Acids/metabolism , Eicosapentaenoic Acid/metabolism , Female , Male , Rats , Rats, Sprague-Dawley , alpha-Linolenic Acid/metabolism
7.
Article in English | MEDLINE | ID: mdl-30661602

ABSTRACT

Dietary PUFA and their effects on adipose tissue have been well studied, but oxylipins, the oxygenated metabolites of PUFA, have been sparsely studied in adipose tissue. To determine the oxylipin profile and to examine their potential importance in various adipose sites, female and male rats were provided control, high linoleic acid (LA), or high LA and high α-linolenic acid (LA + ALA) diets for six weeks. Analysis of gonadal (GAT), mesenteric (MAT), perirenal (PAT), and subcutaneous adipose tissues (SAT) revealed higher numbers of oxylipins in MAT and SAT, primarily due to 20-22 carbon cytochrome P450 oxylipins, as well as metabolites of cyclooxygenase derived oxylipins. LA oxylipins made up 75-96% of the total oxylipin mass and largely determined the total relative amounts between depots (GAT > MAT > PAT > SAT). However, when the two most abundant LA oxylipins (TriHOMEs) were excluded, MAT had the highest mass of oxylipins and exhibited the most sex differences. These differences existed despite comparable PUFA composition between depots. Dietary LA increased oxylipins derived from n-6 PUFA, and the addition of ALA generally returned n-6 PUFA oxylipins to levels similar to control and elevated some n-3 oxylipins. These data on oxylipin profiles in adipose depots from different anatomical sites and the effects of diet and sex provide fundamental knowledge that will aid future studies investigating the physiological effects of adipose tissue.


Subject(s)
Diet , Intra-Abdominal Fat/drug effects , Intra-Abdominal Fat/metabolism , Oxylipins/metabolism , Subcutaneous Fat, Abdominal/drug effects , Subcutaneous Fat, Abdominal/metabolism , alpha-Linolenic Acid/pharmacology , Animals , Female , Lipoxygenase/metabolism , Male , Obesity/metabolism , Rats , Rats, Sprague-Dawley , Sex Factors
8.
J Nutr Biochem ; 57: 228-237, 2018 07.
Article in English | MEDLINE | ID: mdl-29778015

ABSTRACT

There is much data on the effects of dietary n-3 fatty acids on tissue fatty acid compositions, but comparable comprehensive data on their oxygenated metabolites (oxylipins) is limited. The effects of providing female and male rats with diets high in α-linolenic acid (ALA), EPA or DHA for 6 weeks on oxylipins and fatty acids in kidney, liver and serum were therefore examined. The oxylipin profile generally reflected fatty acids, but it also revealed unique effects of individual n-3 fatty acids that were not apparent from fatty acid data alone. Dietary ALA increased renal and serum DHA oxylipins even though DHA itself did not increase, while dietary EPA did not increase DHA oxylipins in kidney or liver, suggesting that high EPA may inhibit this conversion. Oxylipin data generally corroborated fatty acid data that indicated that DHA can be retroconverted to EPA and that further retroconversion to ALA is limited. Dietary n-3 fatty acids decreased n-6 fatty acids and their oxylipins (except linoleic acid and its oxylipins), in order of effectiveness of DHA > EPA > ALA, with some exceptions: several arachidonic acid oxylipins modified at carbon 15 were not lower in all three sites, and EPA had a greater effect on 12-hydroxy-eicosatetraenoic acid and its metabolites in the liver. Oxylipins were predominantly higher in males, which was not reflective of fatty acids. Tissue-specific oxylipin profiles, therefore, provide further information on individual dietary n-3 fatty acid and sex effects that may help explain their unique physiological effects and have implications for dietary recommendations.


Subject(s)
Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology , Oxylipins/metabolism , alpha-Linolenic Acid/pharmacology , Animals , Fatty Acids/analysis , Fatty Acids, Omega-3/chemistry , Fatty Acids, Omega-3/pharmacology , Female , Kidney/drug effects , Kidney/metabolism , Liver/drug effects , Liver/metabolism , Male , Oxylipins/blood , Oxylipins/chemistry , Phospholipids/chemistry , Phospholipids/metabolism , Rats, Sprague-Dawley
9.
Article in English | MEDLINE | ID: mdl-29482766

ABSTRACT

Dietary EPA and DHA given together alter oxylipins in adipose tissue. To compare the separate effects of individual dietary n-3 PUFA on oxylipins in different adipose depots (gonadal, mesenteric, perirenal, subcutaneous) in males and females, rats were provided diets containing higher levels of α-linolenic acid (ALA), EPA or DHA. Each n-3 PUFA enhanced its respective oxylipins the most, while effects on other n-3 oxylipins varied. For example: in perirenal and subcutaneous depots, more DHA oxylipins were higher with dietary ALA than with EPA; dietary EPA uniquely decreased 14-hydroxy-docosahexaenoic acid, in contrast to increasing many other DHA oxylipins. The n-3 PUFAs also reduced oxylipins from n-6 PUFAs in order of effectiveness: DHA > EPA > ALA. Diet by sex interactions in all depots except the perirenal depot resulted in higher oxylipins in males given DHA, and higher oxylipins in females given the other diets. Diet and sex effects on oxylipins did not necessarily reflect effects on either their tissue phospholipid or neutral lipid PUFA precursors. These varying diet and sex effects on oxylipins in the different adipose sites indicate that they may have distinct effects on adipose function.


Subject(s)
Adipose Tissue/drug effects , Dietary Supplements , Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology , Oxylipins/chemistry , alpha-Linolenic Acid/pharmacology , Adipose Tissue/chemistry , Adipose Tissue/metabolism , Animals , Female , Male , Organ Specificity , Oxylipins/classification , Oxylipins/metabolism , Rats , Rats, Sprague-Dawley , Sex Factors , Weaning
10.
J Lipid Res ; 58(8): 1702-1712, 2017 08.
Article in English | MEDLINE | ID: mdl-28667077

ABSTRACT

A vast literature on fatty acids in mammals exists, but comparable compositional data on oxylipins is lacking. Weanling Sprague-Dawley rats were therefore provided control diets or diets with higher linoleic acid (LA) or with higher LA and α-linolenic acid (LA+ALA) for 6 weeks. Kidneys, livers, and serum were analyzed for oxylipins and fatty acids. The proportion of tissue oxylipins derived from LA was greater than the relative proportion of LA itself, whereas arachidonic acid (AA) oxylipins were overrepresented in serum. Higher dietary LA increased kidney LA and AA oxylipins, despite not altering LA or AA. In liver, both LA and AA and their oxylipins were higher, whereas in serum only LA oxylipins were higher with higher dietary LA. Higher LA resulted in a higher ratio of n-6/n-3 PUFA-derived oxylipins; adding ALA to the LA diet mitigated this and many, but not all, effects of the LA diet. Approximately 40% of oxylipins detected were influenced by sex and, unlike their PUFA precursors, most (>90%) of these were higher in males. These differences in dietary LA and sex on oxylipin and fatty acid profiles further our understanding of the effects of fatty acids and may have implications for dietary LA recommendations.


Subject(s)
Dietary Fats/pharmacology , Kidney/drug effects , Linoleic Acid/pharmacology , Liver/drug effects , Oxylipins/blood , Oxylipins/metabolism , Sex Characteristics , Animals , Female , Kidney/metabolism , Linoleic Acid/chemistry , Liver/metabolism , Male , Rats , Rats, Sprague-Dawley
11.
Adv Nutr ; 7(5): 905-16, 2016 09.
Article in English | MEDLINE | ID: mdl-27633106

ABSTRACT

Alzheimer disease (AD) is becoming one of the most prevalent neurodegenerative conditions worldwide. Although the disease progression is becoming better understood, current medical interventions can only ameliorate some of the symptoms but cannot slow disease progression. Neuroinflammation plays an important role in the advancement of this disorder, and n-3 (ω-3) polyunsaturated fatty acids (PUFAs) are involved in both the reduction in and resolution of inflammation. These effects may be mediated by the anti-inflammatory and proresolving effects of bioactive lipid mediators (oxylipins) derived from n-3 PUFAs [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] in fish oil. Although interventions have generally used fish oil containing both EPA and DHA, several studies that used either EPA or DHA alone or specific oxylipins derived from these fatty acids indicate that they have distinct effects. Both DHA and EPA can reduce neuroinflammation and cognitive decline, but EPA positively influences mood disorders, whereas DHA maintains normal brain structure. Fewer studies with a plant-derived n-3 PUFA, α-linolenic acid, suggest that other n-3 PUFAs and their oxylipins also may positively affect AD. Further research identifying the unique anti-inflammatory and proresolving properties of oxylipins from individual n-3 PUFAs will enable the discovery of novel disease-management strategies in AD.


Subject(s)
Alzheimer Disease/drug therapy , Anti-Inflammatory Agents/therapeutic use , Docosahexaenoic Acids/therapeutic use , Eicosapentaenoic Acid/therapeutic use , Inflammation/drug therapy , Oxylipins/therapeutic use , alpha-Linolenic Acid/therapeutic use , Alzheimer Disease/pathology , Anti-Inflammatory Agents/pharmacology , Brain/drug effects , Cognition Disorders/drug therapy , Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology , Humans , Mood Disorders/drug therapy , Oxylipins/pharmacology , alpha-Linolenic Acid/pharmacology
12.
Adv Nutr ; 6(5): 513-40, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26374175

ABSTRACT

Oxylipins formed from polyunsaturated fatty acids (PUFAs) are the main mediators of PUFA effects in the body. They are formed via cyclooxygenase, lipoxygenase, and cytochrome P450 pathways, resulting in the formation of prostaglandins, thromboxanes, mono-, di-, and tri-hydroxy fatty acids (FAs), epoxy FAs, lipoxins, eoxins, hepoxilins, resolvins, protectins (also called neuroprotectins in the brain), and maresins. In addition to the well-known eicosanoids derived from arachidonic acid, recent developments in lipidomic methodologies have raised awareness of and interest in the large number of oxylipins formed from other PUFAs, including those from the essential FAs and the longer-chain n-3 (ω-3) PUFAs. Oxylipins have essential roles in normal physiology and function, but can also have detrimental effects. Compared with the oxylipins derived from n-3 PUFAs, oxylipins from n-6 PUFAs generally have greater activity and more inflammatory, vasoconstrictory, and proliferative effects, although there are notable exceptions. Because PUFA composition does not necessarily reflect oxylipin composition, comprehensive analysis of the oxylipin profile is necessary to understand the overall physiologic effects of PUFAs mediated through their oxylipins. These analyses should include oxylipins derived from linoleic and α-linolenic acids, because these largely unexplored bioactive oxylipins constitute more than one-half of oxylipins present in tissues. Because collated information on oxylipins formed from different PUFAs is currently unavailable, this review provides a detailed compilation of the main oxylipins formed from PUFAs and describes their functions. Much remains to be elucidated in this emerging field, including the discovery of more oxylipins, and the understanding of the differing biological potencies, kinetics, and isomer-specific activities of these novel PUFA metabolites.


Subject(s)
Fatty Acids, Omega-3/chemistry , Fatty Acids, Omega-6/chemistry , Oxylipins/chemistry , Cytochrome P-450 Enzyme System/metabolism , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-6/pharmacology , Humans , Lipoxygenase/metabolism , Oxylipins/pharmacology , Prostaglandin-Endoperoxide Synthases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...