Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 946: 174081, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908575

ABSTRACT

Biochar is a porous carbon material generated by the thermal treatment of biomass under anaerobic or anoxic conditions with wealthy Oxygen-containing functional groups (OCFGs). To date, OCFGs of biochar have been extensively studied for their significant utility in pollutant removal, catalysis, capacitive applications, etc. This review adopted a whole system philosophy and systematically summarizes up-to-date knowledge of formation, detection methods, engineering, and application for OCFGs. The formation mechanisms and detection methods of OCFGs, as well as the relationships between OCFGs and pyrolysis conditions (such as feedstocks, temperature, atmosphere, and heating rate), were discussed in detail. The review also summarized strategies and mechanisms for the oxidation of biochar to afford OCFGs, with the performances and mechanisms of OCFGs in the various application fields (environmental remediation, catalytic biorefinery, and electrode material) being highlighted. In the end, the future research direction of biochar OCFGs was put forward.

2.
Sci Total Environ ; 820: 153348, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35077787

ABSTRACT

Co-liquefaction was combined with hydrothermal liquefaction (HTL) aqueous phase (AP) recirculation to improve the practicality of HTL process. The Chlorella powder (CL), soybean straw (SS), and their mixture (CS) with ratio 1:1 were processed at 300 °C for 20 min, and the AP was recirculated four times. The yield of CS bio-crude was increased (from 24.28% to 31.83%) by co-liquefaction, but remained stable during AP recirculation. By contrast, the yields were increased for CL bio-crude (from 32.40% to 41.19%), SS hydrochar (from 19.55% to 30.88%), and CS hydrochar (from 9.42% to 14.76%) by recirculation. The elemental analysis, chemical composition analysis, functionality analysis, thermogravimetric analysis, and verification experiments (HTL with model AP components) show the N-containing compounds (e.g., amines) in AP were converted into amides (acylation) for CL bio-crude, into N-heterocycles (Maillard reactions) for CS hydrochar, and into Mannich bases for SS hydrochar, which contributed to the increased yield and N content (from 7.27% to 8.82% for CL bio-crude). Furthermore, the O content of CS bio-crude was decreased (from 15.31% to 12.52%) by recirculation, resulted from the conversion of N-heterocyclic ketones into pyrazine derivates. The decreased O content and comprehensive combustibility index (from 0.306 to 0.177) of CS bio-crude indicate the great potential of this craft combination.


Subject(s)
Chlorella , Biofuels/analysis , Biomass , Glycine max , Temperature , Water/chemistry
3.
Bioresour Technol ; 342: 126011, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34852447

ABSTRACT

Hydrothermal liquefaction (HTL) of algae is a promising biofuel production technology. However, it is always difficult and time-consuming to identify the best optimal conditions of HTL for different algae by the conventional experimental study. Therefore, machine learning (ML) algorithms were applied to predict and optimize bio-oil production with algae compositions and HTL conditions as inputs, and bio-oil yield (Yield_oil), and the contents of oxygen (O_oil) and nitrogen (N_oil) in bio-oil as outputs. Results indicated that gradient boosting regression (GBR, average test R2 âˆ¼ 0.90) exhibited better performance than random forest (RF) for both single and multi-target tasks prediction. Furthermore, the model-based interpretation suggested that the relative importance of operating conditions (temperature and residence time) was higher than algae characteristics for the three targets. Moreover, ML-based reverse and forward optimizations were implemented with experimental verifications. The verifications were acceptable, showing great potential of ML-aided HTL for producing desirable bio-oil.


Subject(s)
Biofuels , Water , Biomass , Machine Learning , Plant Oils , Polyphenols , Temperature
4.
Bioresour Technol ; 330: 125008, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33773267

ABSTRACT

The treatment of wastewater by microalgae has been studied and proved to be effective through previous studies. Due to the small size of microalgae, how to efficiently harvest microalgae from wastewater is a crucial factor restricting the development of algal technologies. Fungi-assisted microalgae bio-flocculation for microalgae harvesting and wastewater treatment simultaneously, which was overlooked previously, has attracted increasing attention in the recent decade due to its low cost and high efficiency. This review found that fungal hyphae and microalgae can stick together due to electrostatic neutralization, surface protein interaction, and exopolysaccharide adhesion in the co-culture process, realizing co-pelletization of microalgae and fungi, which is conducive to microalgae harvesting. Besides, the combination of fungi and microalgae has a complementary effect on pollutant removal from wastewaters. The co-culture of fungi-microalgae has excellent development prospects with both environmental and economic benefits, and it is expected to be applied on an industrial scale.


Subject(s)
Microalgae , Biomass , Coculture Techniques , Flocculation , Fungi , Wastewater
5.
Sci Total Environ ; 756: 143679, 2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33307499

ABSTRACT

Biomass is a type of renewable and sustainable resource that can be used to produce various fuels, chemicals, and materials. Nitrogen (N) in biomass such as microalgae should be reduced if it is used to produce fuels, while the retention of N is favorable if the biomass is processed to yield chemicals or materials with N-containing functional groups. The engineering of the removal and retention of N in hydrochar during hydrothermal carbonization (HTC) of biomass rich in protein is a research hot spot in the past decade. However, the N transformation during HTC has not yet been fully understood. In order to mediate the migration and transformation of N in hydrochar, the present review overviewed i) the characteristics of hydrochar and the original feedstock, ii) the possible N transformation behavior and mechanisms, and iii) the effect of factors such as feedstock and pyrolysis parameters such as temperature on hydrochar N. The high temperature and high protein content promote the dehydration, decarboxylation, and deamination of biomass to produce hydrochar solid fuel with reduced N content, while the Millard and Mannich reactions for lignocellulosic biomass rich in carbohydrate (cellulose, hemicellulose, and lignin) at medium temperatures (e.g., 180-240 °C) significantly promote the enrichment of N in hydrochar. The prediction models can be built based on properties of biomass and the processing parameters for the estimation of the yield and the content of N in hydrochar.


Subject(s)
Carbon , Nitrogen , Biomass , Pyrolysis , Temperature
6.
Sci Total Environ ; 748: 142383, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33113702

ABSTRACT

Hydrothermal carbonization (HTC)/liquefaction (HTL)/gasification (HTG) are promising processes for biofuel production from biomass containing high moisture. However, wastewater, the aqueous phase (AP) byproduct from these hydrothermal processes, is inevitably produced in large amounts. The AP contains >20% of the biomass carbon, and the total organic carbon in AP is as high as 10-20 g/L. The treatment and utilization of AP are becoming a bottleneck for the industrialization of hydrothermal technologies. The major challenges are the presence of various inhibitory substances and the high complexity of AP. Bioenergy recovery from AP has attracted increasing interest. In the present review, the compositions and characteristics of AP are first presented. Then, the progress in recovering bioenergy from AP by recirculation as the reaction solvent, anaerobic digestion (AD), supercritical water gasification (SCWG), microbial fuel cell (MFC), microbial electrolysis cell (MEC), and microalgae cultivation is discussed. Recirculation of AP as reaction solvent is preferable for AP from biomass with relatively low moisture; AD, MFC/MEC, and microalgae cultivation are desirable for the treatment of AP produced from processing biomass with low lignin content at relatively low temperatures; SCWG is widely applicable but is energy-intensive. Finally, challenges and corresponding strategies are proposed to promote the development of AP valorization technologies. Comprehensive analysis of AP compositions, clarification of the mechanisms of valorization processes, valorization process integration detoxification of AP, polycultures and co-processing of AP with other waste, enhancement in pollutant removal, scaling-up performance, and the techno-economic analysis and life-cycle assessment of valorization systems are promising directions in future investigations.


Subject(s)
Microalgae , Wastewater , Biofuels , Biomass , Temperature
7.
Bioresour Technol ; 318: 124081, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32927317

ABSTRACT

Aqueous phase (AP) recirculation is attracting increasing interest in hydrothermal process field as it has the potential to increase the yield of bio-crude and/or hydrochar and decrease the cost of hydrothermal wastewater disposal. This work summarizes the effect of AP recirculation on hydrothermal processing biomass, including the discussions on the mechanisms account for the increased yield and the changing properties of the hydrochar and bio-crude. However, the application of AP recirculation in hydrothermal process is limited by the enrichment of nitrogen in bio-crude and the applicability of only specific biomass type. To alleviate these limitations, the feasibility of combining AP recirculation with other strategies (e.g., co-solvent and co-feed) has been discussed. The possibility of using AP as a resource (e.g., nutrient source, and material mediator) can be increased by AP recirculation due to the accumulation of substances.


Subject(s)
Carbon , Water , Biofuels , Biomass , Nitrogen , Temperature
8.
Bioresour Technol ; 315: 123801, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32673983

ABSTRACT

Pyrolysis of protein-rich biomass, such as microalgae, macroalgae, sewage sludge, energy crops, and some lignocellulosic biomass, produces bio-oil with high nitrogen (N) content, sometimes as high as 10 wt% or even higher. Major nitrogenous compounds in bio-oil include amines/amides, N-containing heterocycles, and nitriles. Such bio-oil cannot be used as fuel directly since the high N content will induce massive emission of nitrogen oxides during combustion. The present review comprehensively summarized the effects of biomass compositions (i.e., elemental, biochemical, and mineral compositions) and pyrolysis parameters (i.e., temperature, heating rate, atmosphere, bio-oil collection/fractionation methods, and catalysts) on the contents of N and the N-containing chemical components in bio-oil. The migration and transformation mechanisms of N during the pyrolysis of biomass were then discussed in detail. Finally, the research gaps were identified, followed by the proposals for future investigations to achieve the denitrogenation of bio-oil.


Subject(s)
Microalgae , Pyrolysis , Biofuels , Biomass , Hot Temperature , Nitrogen
9.
Bioresour Technol ; 298: 122502, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31830659

ABSTRACT

Aqueous phase (AP) is the wastewater (byproduct) produced during hydrothermal treatment of biomass. This study aims to investigate the effect of AP recirculation on hydrochar from different types of biomass. Therefore, Chlorella (CL) and soybean straw (SS) were hydrothermally carbonized (HTC) at 220 °C for 240 min with AP recirculation for four cycles, respectively. The yield of hydrochar was increased from 20.5% to 26.7% for CL and from 47.7% to 54.7% for SS. More carbon distribution in hydrochar was observed, which increased the energy recovery from biomass by HTC by 10%-12%. Most fuel properties such as elemental compositions of the hydrochar were only slightly influenced by the AP recirculation. Furthermore, AP was used for algal cultivation, and the maximum biomass density of ~1.2 (inoculum optical density 680 nm of ~ 0.2) was obtained in CL AP without recirculation and in SS AP with three times of recirculation, respectively.


Subject(s)
Chlorella , Microalgae , Biomass , Carbon , Glycine max , Temperature
10.
Bioresour Technol ; 298: 122286, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31690478

ABSTRACT

Biochar is a carbonaceous material produced by thermal treatment, e.g., pyrolysis, of biomass in oxygen-deficient or oxygen-free environment. Nitrogen containing functional groups of biochar have a wide range of applications, such as adsorption of pollutants, catalysis, and energy storage. To date, many methods have been developed and used to strengthen the function of N-containing biochar to promote its application and commercialization. However, there is no review available specifically on the development of biochar technologies concerning nitrogen-containing functional groups. This paper aims to present a review on fractionation, analysis, formation, engineering, and application of N-functional groups of biochar. The effect of influencing factors on biochar N-functional groups, including biomass feedstock, pyrolysis parameters (e.g., temperature), and additional treatment (e.g., N-doping) were discussed in detail to reveal the formation mechanisms and performance of the N-functional groups. Future prospective investigation directions on the analysis and engineering of biochar N-functional groups were also proposed.


Subject(s)
Charcoal , Nitrogen , Adsorption , Biomass
11.
Bioresour Technol ; 259: 156-163, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29550668

ABSTRACT

Co-liquefaction of municipal sewage sludge (MSS) and heavy metal (HM) contaminated lignocellulosic biomass (rice straw or wood sawdust) was conducted at 300 °C with ethanol as the solvent to study the transformation behavior of HMs (e.g., Cu, Cd, Pb, Cr, Zn, and Ni). The results indicate that HMs in rice straw or wood sawdust transferred heavily to bio-oils (up to 10-25% of the total Cu, Cd, and Zn) when they were liquefied individually, compared with MSS with only ∼5% distributed to bio-oil. The bio-available fraction of HMs in bio-chars and bio-oils produced from liquefaction of individual biomass were assessed to show medium to high risk to the environment. Co-liquefaction promoted the distribution of HMs to solid bio-char. Moreover, co-liquefaction benefited the immobilization of HMs in bio-chars and bio-oils. Synergistic effects were found for HMs immobilization during co-liquefaction.


Subject(s)
Metals, Heavy , Sewage , Biomass , Plant Oils , Polyphenols
SELECTION OF CITATIONS
SEARCH DETAIL
...