Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 872: 162183, 2023 May 10.
Article in English | MEDLINE | ID: mdl-36804975

ABSTRACT

Partial organic substitution (POS) is pivotal in enhancing soil productivity and changing nitrous oxide (N2O) emissions by profoundly altering soil nitrogen (N) cycling, where ammonia oxidation is a fundamental core process. However, the regulatory mechanisms of N2O production by ammonia oxidizers at the microbial community level under POS regimes remain unclear. This study explored soil ammonia oxidation and related N2O production, further building an understanding of the correlations between ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) activity and community structure in tropical arable soils under four-year field management regimes (CK, without fertilizer N; N, with only inorganic N; M1N1, with 1/2 organic N + 1/2 inorganic N; M1N2, with 1/3 organic N + 2/3 inorganic N). AOA contributed more to potential ammonia oxidation (PAO) than AOB across all treatments. In comparison with CK, N treatment had no obvious effects on PAO and lowered related N2O emissions by decreasing soil pH and downregulating the abundance of AOA- and AOB-amoA. POS regimes significantly enhanced PAO and N2O emissions relative to N treatment by promoting the abundances and contributions of AOA and AOB. The stimulated AOA-dominated N2O production under M1N1 was correlated with promoted development of Nitrososphaera. By contrast, the increased AOB-dominated N2O production under M1N2 was linked to the enhanced development of Nitrosospira multiformis. Our study suggests organic substitutions with different proportions of inorganic and organic N distinctively regulate the development of specific species of ammonia oxidizers to increase associated N2O emissions. Accordingly, appropriate options should be adopted to reduce environmental risks under POS regimes in tropical croplands.


Subject(s)
Archaea , Betaproteobacteria , Soil/chemistry , Ammonia , Oxidation-Reduction , Soil Microbiology , Bacteria , Nitrification
2.
Environ Res ; 214(Pt 3): 113989, 2022 11.
Article in English | MEDLINE | ID: mdl-35964669

ABSTRACT

Agricultural soils are the hotspots of nitric oxide (NO) emissions, which are related to atmospheric pollution and greenhouse effect. Biochar application has been recommended as an important countermeasure, however, its mitigation efficiency is limited as biochar, under certain conditions, can stimulate soil nitrification. Therefore, biochar co-applied with nitrification inhibitor could optimize the mitigation potential of biochar. Herein, a laboratory-scale experiment was conducted to investigate the effects of co-application of biochar and nitrification inhibitor on NO emission, nitrogen cycling function and bacterial community in a tropical vegetable soil. Results showed that a single application of biochar or nitrification inhibitor significantly decreased NO emissions, and this mitigation effectiveness was amplified by their co-applications. Soil NO2--N intensity, along with abundances of AOB-amoA and nirK were significantly and positively correlated with cumulative NO emissions. The stimulated activity of ammonia monooxygenase and growths of AOB and total comammox Nitrospira by biochar were weakened by nitrification inhibitor, implying decreased nitrification-driven NO production. The nitric oxide reductase activity and related qnorB abundance in nitrification inhibitor-added soils were increased by biochar, indicating promoted NO consumption during denitrification. The nirK abundance and NO2--N intensity were decreased more by co-applications of biochar or nitrification inhibitor. Moreover, both biochar and nitrification inhibitor changed bacterial ß-diversity, and their co-application synergistically enriched Armatimonadetes and Verrucomicrobia abundances and decreased WPS-2 abundance. This study highlights that co-applications of biochar and nitrification inhibitor can make their respective advantages complementary to each other, thereby achieving a larger mitigation of NO emissions from agricultural soils in tropical regions.


Subject(s)
Nitrification , Soil , Bacteria , Charcoal , Nitric Oxide , Nitrogen Dioxide , Nitrous Oxide , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...