Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 15(5)2023 May 22.
Article in English | MEDLINE | ID: mdl-37242807

ABSTRACT

The paradigm of drug delivery via particulate formulations is one of the leading ideas that enable overcoming limitations of traditional chemotherapeutic agents. The trend toward more complex multifunctional drug carriers is well-traced in the literature. Nowadays, the prospectiveness of stimuli-responsive systems capable of controlled cargo release in the lesion nidus is widely accepted. Both endogenous and exogenous stimuli are employed for this purpose; however, endogenous pH is the most common trigger. Unfortunately, scientists encounter multiple challenges on the way to the implementation of this idea related to the vehicles' accumulation in off-target tissues, their immunogenicity, the complexity of drug delivery to intracellular targets, and finally, the difficulties in the fabrication of carriers matching all imposed requirements. Here, we discuss fundamental strategies for pH-responsive drug delivery, as well as limitations related to such carriers' application, and reveal the main problems, weaknesses, and reasons for poor clinical results. Moreover, we attempted to formulate the profiles of an "ideal" drug carrier in the frame of different strategies drawing on the example of metal-comprising materials and considered recently published studies through the lens of these profiles. We believe that this approach will facilitate the formulation of the main challenges facing researchers and the identification of the most promising trends in technology development.

2.
ACS Infect Dis ; 9(5): 1137-1149, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37104539

ABSTRACT

The search for novel therapeutic strategies to treat fungal diseases is of special importance nowadays given the emerging threat of drug resistance. Various particulate delivery systems are extensively being developing to enhance bioavailability, site-specific penetration, and therapeutic efficacy of antimycotics. Recently, we have designed a novel topical formulation for griseofulvin (Gf) drug, which is currently commercially available in oral dosage forms due to its limited skin permeation. The proposed formulation is based on vaterite carriers that enabled effective incorporation and ultrasonically assisted delivery of Gf to hair follicles improving its dermal bioavailability. Here, we evaluated the effect of ultrasound on the viability of murine fibroblasts co-incubated with either Gf-loaded carriers or a free form of Gf and investigated the influence of both forms on different subpopulations of murine blood cells. The study revealed no sufficient cyto- and hemotoxicity of the carriers, even at the highest investigated concentrations. We also conducted a series of in vivo experiments to assess their multi-dose dermal toxicity and antifungal efficiency. Visual and histological examinations of the skin in healthy rabbits showed no obvious adverse effects after US-assisted application of the Gf-loaded carriers. At the same time, investigation of therapeutic efficiency for the designed formulation in comparison with free Gf and isoconazole drugs in a guinea pig model of trichophytosis revealed that the vaterite-based form of Gf provided the most rapid and effective cure of infected animals together with the reduction in therapeutic procedure number. These findings pave the way to improving antifungal therapy of superficial mycoses and justifying further preclinical studies.


Subject(s)
Antifungal Agents , Mycoses , Mice , Animals , Rabbits , Guinea Pigs , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Griseofulvin/pharmacology , Griseofulvin/therapeutic use , Calcium Carbonate/metabolism , Calcium Carbonate/pharmacology , Calcium Carbonate/therapeutic use , Skin/metabolism , Mycoses/drug therapy
3.
J Mater Chem B ; 11(17): 3860-3870, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37013677

ABSTRACT

Transcutaneous immunization receives much attention due to the recognition of a complex network of immunoregulatory cells in various layers of the skin. The elaboration of non-invasive needle-free approaches towards antigen delivery holds especially great potential here while searching for a hygienically optimal vaccination strategy. Here, we report on a novel protocol for transfollicular immunization aiming at delivery of an inactivated influenza vaccine to perifollicular antigen presenting cells without disrupting the stratum corneum integrity. Porous calcium carbonate (vaterite) submicron carriers and sonophoresis were utilized for this purpose. Transportation of the vaccine-loaded particles into hair follicles of mice was assessed in vivo via optical coherence tomography monitoring. The effectiveness of the designed immunization protocol was further demonstrated in an animal model by means of micro-neutralization and enzyme-linked immunosorbent assays. The titers of secreted virus-specific IgGs were compared to those obtained in response to intramuscular immunization using conventional influenza vaccine formulation demonstrating no statistically significant differences in antibody levels between the groups. The findings of our pilot study render the intra-follicular delivery of the inactivated influenza vaccine by means of vaterite carriers a promising alternative to invasive immunization.


Subject(s)
Influenza Vaccines , Influenza, Human , Animals , Mice , Humans , Pilot Projects , Administration, Cutaneous , Vaccination , Immunization/methods
4.
Micromachines (Basel) ; 15(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38276844

ABSTRACT

The development of advanced methods for the synthesis of nano- and microparticles in the field of biomedicine is of high interest due to a range of reasons. The current synthesis methods may have limitations in terms of efficiency, scalability, and uniformity of the particles. Here, we investigate the synthesis of submicron calcium carbonate using a microfluidic chip with a T-shaped oil supply for droplet-based synthesis to facilitate control over the formation of submicron calcium carbonate particles. The design of the chip allowed for the precise manipulation of reaction parameters, resulting in improved porosity while maintaining an efficient synthesis rate. The pore size distribution within calcium carbonate particles was estimated via small-angle X-ray scattering. This study showed that the high porosity and reduced size of the particles facilitated the higher loading of a model peptide: 16 vs. 9 mass.% for the particles synthesized in a microfluidic device and in bulk, correspondingly. The biosafety of the developed particles in the concentration range of 0.08-0.8 mg per plate was established by the results of the cytotoxicity study using mouse fibroblasts. This innovative approach of microfluidically assisted synthesis provides a promising avenue for future research in the field of particle synthesis and drug delivery systems.

5.
Biomater Sci ; 10(12): 3323-3345, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35587110

ABSTRACT

Superficial fungal infections are of serious concern worldwide due to their morbidity and increasing distribution across the globe in this era of growing antimicrobial resistance. The delivery of antifungals to the target regions of the skin and sustaining the effective drug concentration are essential for successful treatment of such mycoses. Topical formulations get extra benefits here if they penetrate into the hair follicles since fungal hyphae can proliferate and produce spores in such reservoirs. We designed a novel particulate system for the encapsulation and intrafollicular delivery of griseofulvin (Gf) antifungal drug, which is water-insoluble and currently commercially available in oral dosage forms. Micron-sized calcium carbonate (vaterite) carriers containing 25 ± 3% (w/w) of Gf were prepared via the wet chemical method. The successful in vivo transportation of the carriers into the hair follicles of rats was demonstrated using scanning electron and confocal laser scanning microscopy. In addition, we introduced an approach toward Gf release prolongation for the proposed system. The stabilizing coatings were formed on the surface of the obtained particles via the layer-by-layer technique. The formulations displayed sufficient biocompatibility and good cellular uptake in contact with fibroblast cells in vitro. Four different coatings were tested for their preserving ability in the course of continued carrier incubation in the model media. The best release prolonging formulation liberated 38% of the loaded Gf during 5 days, while the uncoated carriers demonstrated more than 50% drug release within the first 24 h in water. To assess the in vivo release properties, free Gf drug and Gf-loaded carriers (uncovered and covered with the stabilizing shell) were administered topically in rats and the drug excretion profiles were further studied. By comparing the daily Gf levels in urine, we verified the sustained effect (longer than a week) of the stabilizing shell formed on the carrier surface. Conversely, the application of the free drug did not provide reliable Gf detection for this period. These findings open new prospects for the efficiency enhancement of topical therapeutics. Importantly, the elaborated system could be adapted for the dermal delivery of various water-insoluble drugs beyond the scope of antifungal therapy.


Subject(s)
Antifungal Agents , Hair Follicle , Animals , Antifungal Agents/pharmacology , Calcium Carbonate , Drug Carriers/metabolism , Drug Delivery Systems , Excipients , Rats , Skin Absorption , Water
6.
Pharmaceutics ; 14(1)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35057035

ABSTRACT

Naturally inspired biomaterials such as calcium carbonate, produced in biological systems under specific conditions, exhibit superior properties that are difficult to reproduce in a laboratory. The emergence of microfluidic technologies provides an effective approach for the synthesis of such materials, which increases the interest of researchers in the creation and investigation of crystallization processes. Besides accurate tuning of the synthesis parameters, microfluidic technologies also enable an analysis of the process in situ with a range of methods. Understanding the mechanisms behind the microfluidic biomineralization processes could open a venue for new strategies in the development of advanced materials. In this review, we summarize recent advances in microfluidic synthesis and analysis of CaCO3-based bioinspired nano- and microparticles as well as core-shell structures on its basis. Particular attention is given to the application of calcium carbonate particles for drug delivery.

7.
Biomater Adv ; 133: 112632, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35034815

ABSTRACT

Hydrogels, which are versatile three-dimensional structures containing polymers and water, are very attractive for use in biomedical fields, but they suffer from rather weak mechanical properties. In this regard, biocompatible particles can be used to enhance their mechanical properties. The possibility of loading such particles with drugs (e.g. enzymes) makes them a particularly useful component in hydrogels. In this study, micro/nanoparticles containing various ratios of Ca2+/Mg2+ with sizes ranging from 1 to 8 µm were prepared and mixed with gellan gum (GG) solution to study the in-situ formation of hydrogel-particle composites. The particles provide multiple functionalities: 1) they efficiently crosslink GG to induce hydrogel formation through the release of the divalent cations (Ca2+/Mg2+) known to bind to GG polymer chains; 2) they enhance mechanical properties of the hydrogel from 2 up to 100 kPa; 3) the samples most efficiently promoting cell growth were found to contain two types of minerals: vaterite and hydroxymagnesite, which enhanced cells proliferation and hydroxyapatite formation. The results demonstrate that such composite materials are attractive candidates for applications in bone regeneration.


Subject(s)
Biocompatible Materials , Hydrogels , Biocompatible Materials/pharmacology , Bone Regeneration , Calcium Carbonate/chemistry , Durapatite/pharmacology , Hydrogels/pharmacology
8.
Mater Sci Eng C Mater Biol Appl ; 126: 112144, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34082955

ABSTRACT

The microvascular changes caused by disorders of host immune response to oral microorganisms resulting in long-lasting inflammation of gums play a critical role in the periodontal lesion in the pathogenesis of chronic periodontitis. Current strategies of non-surgical periodontal therapy are aimed at the attainment of anti-inflammatory effects. We hypothesized that the usage of the microencapsulated form of anti-inflammatory substances with vasoactive effects could enhance the efficiency of the therapy by the prolonged release of active components. The prepared suspension of silver-alginate microcapsules loaded with tannic acid in the hydrogel was applied in vivo to the experimental model of periodontitis in rats induced by a ligature. The effect of this formulation was assessed by monitoring changes in local microcirculation performed by the Laser Doppler Flowmetry (1 and 24 h after application of hydrogel on intact gums and 21-days after the start of periodontitis' modeling). Application of the hydrogel containing multicomponent microcapsules to the affected area of gums allows correction of inflammatory microcirculatory disorders in model periodontitis. Immobilization of tannic acid into microcapsules allows increasing the correction of the following parameters: perfusion disorders, neurogenic tone of arterioles, myogenic tone of precapillary sphincters, as well as a venous outflow in the microvasculature of the gums. The hydrogel containing multicomponent microcapsules reduces the vascular inflammatory response in the model of periodontitis. Loading of silver-alginate microcapsules with tannic acid enhances the efficiency of microvascular disorders' correction in the model of periodontitis that suggests the prospects for application of this drug delivery system for non-surgical treatment of periodontitis.


Subject(s)
Alginates , Periodontitis , Animals , Capsules , Microcirculation , Periodontitis/drug therapy , Rats , Silver , Tannins/pharmacology
9.
Nanotheranostics ; 5(3): 362-377, 2021.
Article in English | MEDLINE | ID: mdl-33850694

ABSTRACT

Rationale: The tireless research for effective drug delivery approaches is prompted by poor target tissue penetration and limited selectivity against diseased cells. To overcome these issues, various nano- and micro-carriers have been developed so far, but some of them are characterized by slow degradation time, thus hampering repeated drug administrations. The aim of this study was to pursue a selective delivery of magnetic biodegradable polyelectrolyte capsules in a mouse breast cancer model, using an external magnetic field. Methods: Four different kinds of magnetic polyelectrolyte capsules were fabricated via layer-by-layer assembly of biodegradable polymers on calcium carbonate templates. Magnetite nanoparticles were embedded either into the capsules' shell (sample S) or both into the shell and the inner volume of the capsules (samples CnS, where n is the number of nanoparticle loading cycles). Samples were first characterized in terms of their relaxometric and photosedimentometric properties. In vitro magnetic resonance imaging (MRI) experiments, carried out on RAW 264.7 cells, allowed the selection of two lead samples that proceeded for the in vivo testing on a mouse breast cancer model. In the set of in vivo experiments, an external magnet was applied for 1 hour following the intravenous injection of the capsules to improve their delivery to tumor, and MRI scans were acquired at different time points post administration. Results: All samples were considered non-cytotoxic as they provided more than 76% viability of RAW 264.7 cells upon 2 h incubation. Sample S appeared to be the most efficient in terms of T2-MRI contrast, but the less sensitive to external magnet navigation, since no difference in MRI signal with and without the magnet was observed. On the other side, sample C6S was efficiently delivered to the tumor tissue, with a three-fold T2-MRI contrast enhancement upon the external magnet application. The effective magnetic targeting of C6S capsules was also confirmed by the reduction in T2-MRI contrast in spleen if compared with the untreated with magnet mice values, and the presence of dense and clustered iron aggregates in tumor histology sections even 48 h after the magnetic targeting. Conclusion: The highlighted strategy of magnetic biodegradable polyelectrolyte capsules' design allows for the development of an efficient drug delivery system, which through an MRI-guided externally controlled navigation may lead to a significant improvement of the anticancer chemotherapy performance.


Subject(s)
Antineoplastic Agents , Drug Delivery Systems/methods , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/chemistry , Polyelectrolytes/chemistry , Animals , Female , Mammary Neoplasms, Experimental , Mice , Mice, Inbred BALB C , RAW 264.7 Cells
10.
ACS Appl Mater Interfaces ; 13(17): 19701-19709, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33900738

ABSTRACT

In modern biomedical science and developmental biology, there is significant interest in optical tagging to study individual cell behavior and migration in large cellular populations. However, there is currently no tagging system that can be used for labeling individual cells on demand in situ with subsequent discrimination in between and long-term tracking of individual cells. In this article, we demonstrate such a system based on photoconversion of the fluorescent dye rhodamine B co-confined with carbon nanodots in the volume of micron-sized polyelectrolyte capsules. We show that this new fluorescent convertible capsule coding system is robust and is actively uptaken by cell lines while demonstrating low toxicity. Using a variety of cellular lines, we demonstrate how this tagging system can be used for code-like marking and long-term tracking of multiple individual cells in large cellular populations.


Subject(s)
Cell Tracking , Fluorescent Dyes/chemistry , Rhodamines/chemistry , Animals , Carbon/chemistry , Cell Line , Cell Line, Tumor , Humans , Mice , Optical Imaging , Polymers/chemistry , Quantum Dots/chemistry
11.
Mater Sci Eng C Mater Biol Appl ; 119: 111428, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33321579

ABSTRACT

Development of a skin-targeted particulate delivery system providing an extended or sustained release of the payload and a localized therapeutic effect is one of the main challenges in the treatment of fungal skin infections. In the topical administration of antifungals, the drug should penetrate into the stratum corneum and lower layers of the skin in effective concentrations. Here, we introduce biodegradable calcium carbonate carriers containing 4.9% (w/w) of naftifine hydrochloride antimycotic allowing the efficient accumulation into the skin appendages. The proposed particulate formulation ensures the enhancement of the local drug concentration, prolongation of the payload release, and control over its rate. Furthermore, it provides a highly efficient cellular uptake and excellent bioavailability in vitro and enables a deep penetration during transfollicular delivery in vivo. The enhanced fungi growth inhibition efficiency of naftifine-loaded calcium carbonate carriers compared to naftifine solution makes them a promising alternative to creams and gels currently existing on the market.


Subject(s)
Antifungal Agents , Calcium Carbonate , Administration, Cutaneous , Allylamine/analogs & derivatives , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Drug Carriers , Drug Delivery Systems , Porosity , Skin
12.
Skin Pharmacol Physiol ; 33(5): 261-269, 2020.
Article in English | MEDLINE | ID: mdl-33091913

ABSTRACT

Topical therapy of superficial fungal infections allows the prevention of systemic side effects and provides drug targeting at the site of disease. However, an appropriate drug concentration in these sites should be provided to ensure the efficacy of such local treatment. The enhancement of intra- and transdermal penetration and accumulation of antifungal drugs is an important aspect here. The present overview is focused on novel nano-based formulations served to improve antimycotic penetration through the skin. Furthermore, it summarizes various approaches towards the stimulation of drug penetration through and into the stratum corneum and hair follicles, which are considered to be promising for the future improvement of superficial antifungal therapy as providing the drug localization and prolonged storage property at the targeted area.


Subject(s)
Antifungal Agents/administration & dosage , Drug Carriers/administration & dosage , Drug Delivery Systems/methods , Nanotechnology/methods , Skin Absorption/drug effects , Administration, Cutaneous , Animals , Antifungal Agents/metabolism , Drug Carriers/metabolism , Drug Delivery Systems/trends , Humans , Nanotechnology/trends , Skin/drug effects , Skin/metabolism , Skin Absorption/physiology
13.
J Mater Chem B ; 8(35): 7977-7986, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32756699

ABSTRACT

Non-destructive, controllable, remote light-induced release inside cells enables studying of time- and space-specific surface-mediated delivery of bioactive compounds, which is an important approach in a wide range of biomedical tasks, especially those related to the control of cell growth, regenerative medicine, and self-disinfecting structures such as catheters. In this regard, the elaboration of encapsulation and controlled release of oxidative species is in high demand due to its versatile applications. One of the obvious candidates for such species is hydrogen peroxide. However, the delivery of hydrogen peroxide to the site of interest with high temporal and spatial precision remains challenging due to the active and unstable nature of the substance. We hereby present an approach to encapsulate and store a hydrogen peroxide-containing solid compound (sodium percarbonate) in the free-standing arrays of biopolymer-based microchambers. In this regard, we use solid-state encapsulation enabling high payload ability, followed by isolated storage in order to prevent contact of the cargo with water. Monitoring of the release profiles reveals the encapsulation of sodium percarbonate with little leakage for up to 24 hours. Microchambers are fabricated with predetermined size and spatial distribution, which allows the release of extremely small amounts of cargo (10-30 pg) with high spatial accuracy. Microchambers are made of polylactic acid and functionalized by carbon nanodots, which provide biocompatibility and biodegradability of the whole system together with responsiveness towards NIR light. These chambers facilitate both ultrasound-assisted burst release and laser-driven carbon nanoparticle-assisted precise release of extremely small, controlled amounts of a few picograms of hydrogen peroxide in submerged conditions. Microchambers loaded with sodium percarbonate provided adhesion and high viability of mouse fibroblasts over 24 h of exposure. The developed system opens an exciting avenue for prospective delivery routes in a number of areas such as wound healing by time and site-specific release.


Subject(s)
Carbon/chemistry , Drug Carriers/chemistry , Drug Liberation , Hydrogen Peroxide/chemistry , Nanoparticles/chemistry , Polyesters/chemistry , Animals , Carbonates/chemistry , Cell Survival/drug effects , Drug Carriers/toxicity , Fibroblasts/cytology , Fibroblasts/drug effects , Materials Testing , Mice
14.
ACS Omega ; 5(8): 4115-4124, 2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32149240

ABSTRACT

The photocatalytic degradation of organic molecules is one of the effective ways for water purification. At this point, photocatalytic microreactor systems seem to be promising to enhance the versatility of the photoassisted degradation approach. Herein, we propose photoresponsive microcapsules prepared via layer-by-layer assembly of polyelectrolytes on the novel CaCO3/TiO2 composite template cores. The preparation of CaCO3/TiO2 composite particles is challenging because of the poor compatibility of TiO2 and CaCO3 in an aqueous medium. To prepare stable CaCO3/TiO2 composites, TiO2 nanoparticles were loaded into mesoporous CaCO3 microparticles with a freezing-induced loading technique. The inclusion of TiO2 nanoparticles into CaCO3 templates was evaluated with scanning electron microscopy and elemental analysis with respect to their type, concentration, and number of loading iterations. Upon polyelectrolyte shell assembly, the CaCO3 matrix was dissolved, resulting in microreactor capsules loaded with TiO2 nanoparticles. The photoresponsive properties of the resulted capsules were tested by photoinduced degradation of the low-molecule dye rhodamine B in aqueous solution and fluorescently labeled polymer molecules absorbed on the capsule surface under UV light. The exposure of the capsules to UV light resulted in a pronounced degradation of rhodamine B in capsule microvolume and fluorescent molecules on the capsule surface. Finally, the versatility of preparation of multifunctional photocatalytic and magnetically responsive capsules was demonstrated by iterative freezing-induced loading of TiO2 and magnetite Fe3O4 nanoparticles into CaCO3 templates.

15.
J Biophotonics ; 13(4): e201960020, 2020 04.
Article in English | MEDLINE | ID: mdl-31975521

ABSTRACT

Hair follicles (HF) represent a drug delivery reservoir for improved treatment of skin disorders. Although various particulate systems play an important role in HF-targeting, their optical monitoring in skin is challenging due to strong light scattering. Optical clearing is an effective approach allowing the increasing of particle detection depth in skin. The enhancement of optical probing depth (OPD) and optical detection depth (ODD) of particle localization using optical coherence tomography (OCT) was evaluated under application of various optical clearing agents (OCAs) together with skin permeability enhancers ex vivo in rats. Efficient OPD increasing was demonstrated for all investigated OCAs. However, skin dehydration under action of hyperosmotic agents led to the worsening of OCT-contrast in dermis decreasing the ODD. Lipophilic agents provided optical clearing of epidermis without its dehydration. The highest ODD was obtained at application of a PEG-400/oleic acid mixture. This OCA was tested in vivo showing beneficial ODD and OPD enhancement.


Subject(s)
Pharmaceutical Preparations , Tomography, Optical Coherence , Animals , Epidermis , Hair Follicle , Rats , Skin/diagnostic imaging
16.
ACS Biomater Sci Eng ; 6(1): 389-397, 2020 01 13.
Article in English | MEDLINE | ID: mdl-33463221

ABSTRACT

Polyelectrolyte microcapsules and other targeted drug delivery systems could substantially reduce the side effects of drug and overall toxicity. At the same time, the cardiovascular system is a unique transport avenue that can deliver drug carriers to any tissue and organ. However, one of the most important potential problems of drug carrier systemic administration in clinical practice is that the carriers might cause circulatory disorders, the development of pulmonary embolism, ischemia, and tissue necrosis due to the blockage of small capillaries. Thus, the presented work aims to find out the processes occurring in the bloodstream after the systemic injection of polyelectrolyte capsules that are 5 µm in size. It was shown that 1 min after injection, the number of circulating capsules decreases several times, and after 15 min less than 1% of the injected dose is registered in the blood. By this time, most capsules accumulate in the lungs, liver, and kidneys. However, magnetic field action could slightly increase the accumulation of capsules in the region-of-interest. For the first time, we have investigated the real-time blood flow changes in vital organs in vivo after intravenous injection of microcapsules using a laser speckle contrast imaging system. We have demonstrated that the organism can adapt to the emergence of drug carriers in the blood and their accumulation in the vessels of vital organs. Additionally, we have evaluated the safety of the intravenous administration of various doses of microcapsules.


Subject(s)
Drug Carriers , Administration, Cutaneous , Capsules , Polyelectrolytes , Regional Blood Flow
17.
ACS Appl Mater Interfaces ; 11(19): 17270-17282, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30977624

ABSTRACT

Transdermal administration via skin appendages enables both localized and systemic drug delivery, as well as minimizes incidental toxicity. However, the design of an appropriate effective method for clinical use remains challenging. Here, we introduce calcium carbonate-based carriers for the transdermal transportation of bioactive substances. The proposed system presents easily manufacturable biodegradable particles with a large surface area enabling a high payload ability. Topical application of submicron porous CaCO3 particles in rats followed by the therapeutic ultrasound treatment results in their deep penetration through the skin along with plentiful filling of the hair follicles. Exploiting the loading capacity of the porous particles, we demonstrate efficient transportation of a fluorescent marker along the entire depth of the hair follicle down the bulb region. In vivo monitoring of the carrier degradation reveals the active dissolution/recrystallization of CaCO3 particles, resulting in their total resorption within 12 days. The proposed particulate system serves as an intrafollicular depot for drug storage and prolonged in situ release over this period. The urinary excretion profile proves the systemic absorption of the fluorescent marker. Hence, the elaborated transdermal delivery system looks promising for medical applications. The drug delivery to different target regions of the hair follicle may contribute to regenerative medicine, immunomodulation, and treatment of various skin disorders. In the meantime, the systemic uptake of the transported drug opens an avenue for prospective delivery routes beyond the scope of dermatology.


Subject(s)
Biodegradable Plastics/pharmacology , Calcium Carbonate/pharmacology , Drug Carriers/pharmacology , Drug Delivery Systems , Administration, Cutaneous , Animals , Biodegradable Plastics/chemistry , Calcium Carbonate/chemistry , Drug Carriers/chemistry , Hair Follicle/drug effects , Humans , Rats , Skin/drug effects
18.
Mater Sci Eng C Mater Biol Appl ; 98: 1114-1121, 2019 May.
Article in English | MEDLINE | ID: mdl-30812995

ABSTRACT

A novel type of microcontainers based on hollow silver alginate microspheres and magnetite nanoparticles is reported as development of recently published technology. Magnetite nanoparticles were incorporated by two methods - co-precipitation with porous calcium carbonate during template formation and adsorption onto CaCO3 particles or microcontainers' shell. Amount of magnetite loaded and microshells size (4.6 to 6.9 µm) were found to depend on the chosen method for magnetite nanoparticles incorporation. Stability of hollow microshells in saline, phosphate buffer and culturing media was studied. Microcontainers' susceptibility to magnetic field was investigated in solutions of varied viscosity, and their group movement velocity under constant magnetic field was evaluated by sequential optical microscopy imaging. Cell viability tests with prepared microshells were performed that demonstrated negligible cytotoxicity effect on human dermal fibroblasts cells. With HeLa cells moderate viability inhibition was found at high carriers:cells ratio at early time points which is attributed to more active and receptor-mediated endocytosis of carriers as well as known cytotoxicity of magnetite in some cancer cells. At 24 and 48 h time points HeLa cells proliferation fully recovers. Reported data opens perspectives for further biomedical-oriented studies and application of this novel kind of microcontainers with a number of techniques applicable for imaging, control and triggered cargo release provided by presence of silver and magnetite nanoparticles in the carriers and their suitability for further versatile functionalization by traditional LbL approach if needed.


Subject(s)
Ferrosoferric Oxide/chemistry , Hydrogels/chemistry , Magnetite Nanoparticles/chemistry , Silver/chemistry , Adsorption/drug effects , Calcium Carbonate/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Carriers/chemistry , HeLa Cells , Humans , Hydrogels/pharmacology , Microspheres , Porosity
19.
Nanoscale ; 10(36): 17249-17256, 2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30191939

ABSTRACT

Non-destructive, controllable, remote light-induced release inside cells enables studying time- and space-specific processes in biology. In this work we demonstrate the remote release of tagged proteins in Caenorhabditis elegans (C. elegans) worms using a near-infrared laser light as a trigger from novel hydrogel shells functionalized with silver nanoparticles responsive to laser light. A new type of hydrogel shells was developed capable of withstanding prolonged storage in the lyophilized state to enable the uptake of the shell by worms, which takes place on an agar plate under standard culture conditions. Uptake of the shells by C. elegans was confirmed using confocal laser scanning microscopy, while release from alginate shells in C. elegans and the laser effect on the shells on a substrate in air was followed using fluorescence microscopy. In addition, Raman microscopy was used to track the localization of particles to avoid the influence of autofluorescence. Hierarchical cluster spectral analysis is used to extract information about the biochemical composition of an area of a nematode containing the hydrogel shells, whose Raman signal is enhanced by the SERS (Surface Enhanced Raman Scattering) effect due to hot spots formed by silver nanoparticles present in the shells. The in vivo release demonstrated here can be used to study intestinal microbiota and probiotic compounds as well as a possible future strategy for gene delivery in the worms, other insects and other organisms.


Subject(s)
Alginic Acid , Caenorhabditis elegans , Metal Nanoparticles , Proteins/pharmacokinetics , Silver , Animals , Hydrogels , Lasers , Microscopy, Confocal , Microscopy, Fluorescence , Spectrum Analysis, Raman
20.
Membranes (Basel) ; 7(3)2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28809796

ABSTRACT

Membranes are important components in a number of systems, where separation and control of the flow of molecules is desirable. Controllable membranes represent an even more coveted and desirable entity and their development is considered to be the next step of development. Typically, membranes are considered on flat surfaces, but spherical capsules possess a perfect "infinite" or fully suspended membranes. Similarities and transitions between spherical and flat membranes are discussed, while applications of membranes are also emphasized.

SELECTION OF CITATIONS
SEARCH DETAIL
...