Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973176

ABSTRACT

Biosensors are valuable tools in accelerating the test phase of the design-build-test-learn cycle of cell factory development, as well as in bioprocess monitoring and control. G protein-coupled receptor (GPCR)-based biosensors enable cells to sense a wide array of molecules and environmental conditions in a specific manner. Due to the extracellular nature of their sensing, GPCR-based biosensors require compartmentalization of distinct genotypes when screening production levels of a strain library to ensure that detected levels originate exclusively from the strain under assessment. Here, we explore the integration of production and sensing modalities into a single Saccharomyces cerevisiae strain and compartmentalization using three different methods: (1) cultivation in microtiter plates, (2) spatial separation on agar plates, and (3) encapsulation in water-in-oil-in-water double emulsion droplets, combined with analysis and sorting via a fluorescence-activated cell sorting machine. Employing tryptamine and serotonin as proof-of-concept target molecules, we optimize biosensing conditions and demonstrate the ability of the autocrine screening method to enrich for high producers, showing the enrichment of a serotonin-producing strain over a nonproducing strain. These findings illustrate a workflow that can be adapted to screening for a wide range of complex chemistry at high throughput using commercially available microfluidic systems.

2.
Nat Chem Biol ; 19(12): 1551-1560, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37932529

ABSTRACT

Monoterpenoid indole alkaloids (MIAs) represent a large class of plant natural products with marketed pharmaceutical activities against a wide range of indications, including cancer, malaria and hypertension. Halogenated MIAs have shown improved pharmaceutical properties; however, synthesis of new-to-nature halogenated MIAs remains a challenge. Here we demonstrate a platform for de novo biosynthesis of two MIAs, serpentine and alstonine, in baker's yeast Saccharomyces cerevisiae and deploy it to systematically explore the biocatalytic potential of refactored MIA pathways for the production of halogenated MIAs. From this, we demonstrate conversion of individual haloindole derivatives to a total of 19 different new-to-nature haloserpentine and haloalstonine analogs. Furthermore, by process optimization and heterologous expression of a modified halogenase in the microbial MIA platform, we document de novo halogenation and biosynthesis of chloroalstonine. Together, this study highlights a microbial platform for enzymatic exploration and production of complex natural and new-to-nature MIAs with therapeutic potential.


Subject(s)
Catharanthus , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Monoterpenes/metabolism , Indole Alkaloids/metabolism , Plants/metabolism , Pharmaceutical Preparations/metabolism , Plant Proteins/metabolism
3.
Microbiol Spectr ; : e0393322, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37750706

ABSTRACT

Clostridioides difficile infection (CDI) is a major health concern and one of the leading causes of hospital-acquired diarrhea in many countries. C. difficile infection is challenging to treat as C. difficile is resistant to multiple antibiotics. Alternative solutions are needed as conventional treatment with broad-spectrum antibiotics often leads to recurrent CDI. Recent studies have shown that specific microbiota-based therapeutics such as bile acids (BAs) are promising approaches to treat CDI. Clostridium scindens encodes the bile acid-induced (bai) operon that carries out 7-alpha-dehydroxylation of liver-derived primary BAs to secondary BAs. This biotransformation is thought to increase the antibacterial effects of BAs on C. difficile. Here, we used an automated multistage fermentor to study the antibacterial actions of C. scindens and BAs on C. difficile in the presence/absence of a gut microbial community derived from healthy human donor fecal microbiota. We observed that C. scindens inhibited C. difficile growth when the medium was supplemented with primary BAs. Transcriptomic analysis indicated upregulation of C. scindens bai operon and suppressed expression of C. difficile exotoxins that mediate CDI. We also observed BA-independent antibacterial activity of the secretome from C. scindens cultured overnight in a medium without supplementary primary BAs, which suppressed growth and exotoxin expression in C. difficile mono-culture. Further investigation of the molecular basis of our observation could lead to a more specific treatment for CDI than current approaches. IMPORTANCE There is an urgent need for new approaches to replace the available treatment options against Clostridioides difficile infection (CDI). Our novel work reports a bile acid-independent reduction of C. difficile growth and virulence gene expression by the secretome of Clostridium scindens. This potential treatment combined with other antimicrobial strategies could facilitate the development of alternative therapies in anticipation of CDI and in turn reduce the risk of antimicrobial resistance.

4.
Nat Commun ; 13(1): 6201, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36261657

ABSTRACT

G protein-coupled receptors (GPCRs) enable cells to sense environmental cues and are indispensable for coordinating vital processes including quorum sensing, proliferation, and sexual reproduction. GPCRs comprise the largest class of cell surface receptors in eukaryotes, and for more than three decades the pheromone-induced mating pathway in baker's yeast Saccharomyces cerevisiae has served as a model for studying heterologous GPCRs (hGPCRs). Here we report transcriptome profiles following mating pathway activation in native and hGPCR-signaling yeast and use a model-guided approach to correlate gene expression to morphological changes. From this we demonstrate mating between haploid cells armed with hGPCRs and endogenous biosynthesis of their cognate ligands. Furthermore, we devise a ligand-free screening strategy for hGPCR compatibility with the yeast mating pathway and enable hGPCR-signaling in the probiotic yeast Saccharomyces boulardii. Combined, our findings enable new means to study mating, hGPCR-signaling, and cell-cell communication in a model eukaryote and yeast probiotics.


Subject(s)
Probiotics , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Reproduction/genetics , Receptors, G-Protein-Coupled/metabolism , Pheromones/metabolism , Receptors, Cell Surface/metabolism , Cell Differentiation , Cell Communication , Ligands
5.
ACS Sens ; 7(5): 1323-1335, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35452231

ABSTRACT

Serotonin is a key neurotransmitter involved in numerous physiological processes and serves as an important precursor for manufacturing bioactive indoleamines and alkaloids used in the treatment of human pathologies. In humans, serotonin sensing and signaling can occur by 12 G protein-coupled receptors (GPCRs) coupled to Gα proteins. In yeast, human serotonin GPCRs coupled to Gα proteins have previously been shown to function as whole-cell biosensors of serotonin. However, systematic characterization of serotonin biosensing modalities between variant serotonin GPCRs and application thereof for high-resolution serotonin quantification is still awaiting. To systematically assess GPCR signaling in response to serotonin, we characterized reporter gene expression at two different pHs of a 144-sized library encoding all 12 human serotonin GPCRs in combination with 12 different Gα proteins engineered in yeast. From this screen, we observed changes in the biosensor sensitivities of >4 orders of magnitude. Furthermore, adopting optimal biosensing designs and pH conditions enabled high-resolution high-performance liquid chromatography-validated sensing of serotonin produced in yeast. Lastly, we used the yeast platform to characterize 19 serotonin GPCR polymorphisms found in human populations. While major differences in signaling were observed among the individual polymorphisms when studied in yeast, a cross-comparison of selected variants in mammalian cells showed both similar and disparate results. Taken together, our study highlights serotonin biosensing modalities of relevance to both biotechnological and potential human health applications.


Subject(s)
Biosensing Techniques , Receptors, G-Protein-Coupled , Saccharomyces cerevisiae , Serotonin , Biosensing Techniques/methods , Humans , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Serotonin/analysis , Signal Transduction
6.
FEMS Yeast Res ; 20(1)2020 02 01.
Article in English | MEDLINE | ID: mdl-31825496

ABSTRACT

G protein-coupled receptors (GPCRs) comprise the largest class of membrane proteins in the human genome, with a common denominator of seven-transmembrane domains largely conserved among eukaryotes. Yeast is naturally armoured with three different GPCRs for pheromone and sugar sensing, with the pheromone pathway being extensively hijacked for characterising heterologous GPCR signalling in a model eukaryote. This review focusses on functional GPCR studies performed in yeast and on the elucidated hotspots for engineering, and discusses both endogenous and heterologous GPCR signalling. Key emphasis will be devoted to studies describing important engineering parameters to consider for successful coupling of GPCRs to the yeast mating pathway. We also review the various means of applying yeast for studying GPCRs, including the use of yeast armed with heterologous GPCRs as a platform for (i) deorphanisation of orphan receptors, (ii) metabolic engineering of yeast for production of bioactive products and (iii) medical applications related to pathogen detection and drug discovery. Finally, this review summarises the current challenges related to expression of functional membrane-bound GPCRs in yeast and discusses the opportunities to continue capitalising on yeast as a model chassis for functional GPCR signalling studies.


Subject(s)
Protein Engineering , Receptors, G-Protein-Coupled/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Signal Transduction/genetics , Biosensing Techniques , Biotechnology , Drug Discovery , Humans , Pheromones/genetics , Pheromones/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...