Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Evol Comput ; : 1-30, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38530755

ABSTRACT

We study the (1:s+1) success rule for controlling the population size of the (1,λ)- EA. It was shown by Hevia Fajardo and Sudholt that this parameter control mechanism can run into problems for large s if the fitness landscape is too easy. They conjectured that this problem is worst for the ONEMAX benchmark, since in some well-established sense ONEMAX is known to be the easiest fitness landscape. In this paper we disprove this conjecture. We show that there exist s and ɛ such that the self-adjusting (1,λ)-EA with the (1:s+1)-rule optimizes ONEMAX efficiently when started with ɛn zero-bits, but does not find the optimum in polynomial time on DYNAMIC BINVAL. Hence, we show that there are landscapes where the problem of the (1:s+1)-rule for controlling the population size of the (1,λ)-EA is more severe than for ONEMAX. The key insight is that, while ONEMAX is the easiest function for decreasing the distance to the optimum, it is not the easiest fitness landscape with respect to finding fitness-improving steps.

2.
PLoS One ; 17(6): e0269139, 2022.
Article in English | MEDLINE | ID: mdl-35657790

ABSTRACT

In spite of continuous development of gene therapy vectors with thousands of drug candidates in clinical drug trials there are only a small number approved on the market today stressing the need to have characterization methods to assist in the validation of the drug development process. The level of packaging of the vector capsids appears to play a critical role in immunogenicity, hence an objective quantitative method assessing the content of particles containing a genome is an essential quality measurement. As transmission electron microscopy (TEM) allows direct visualization of the particles present in a specimen, it naturally seems as the most intuitive method of choice for characterizing recombinant adeno-associated virus (rAAV) particle packaging. Negative stain TEM (nsTEM) is an established characterization method for analysing the packaging of viral vectors. It has however shown limitations in terms of reliability. To overcome this drawback, we propose an analytical method based on CryoTEM that unambiguously and robustly determines the percentage of filled particles in an rAAV sample. In addition, we show that at a fixed number of vector particles the portion of filled particles correlates well with the potency of the drug. The method has been validated according to the ICH Q2 (R1) guidelines and the components investigated during the validation are presented in this study. The reliability of nsTEM as a method for the assessment of filled particles is also investigated along with a discussion about the origin of the observed variability of this method.


Subject(s)
Dependovirus , Genetic Therapy , Capsid , Dependovirus/genetics , Genetic Vectors/genetics , Reproducibility of Results
3.
Mol Ther Methods Clin Dev ; 19: 486-495, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33313336

ABSTRACT

One important limitation for achieving therapeutic expression of human factor VIII (FVIII) in hemophilia A gene therapy is inefficient secretion of the FVIII protein. Substitution of five amino acids in the A1 domain of human FVIII with the corresponding porcine FVIII residues generated a secretion-enhanced human FVIII variant termed B-domain-deleted (BDD)-FVIII-X5 that resulted in 8-fold higher FVIII activity levels in the supernatant of an in vitro cell-based assay system than seen with unmodified human BDD-FVIII. Analysis of purified recombinant BDD-FVIII-X5 and BDD-FVIII revealed similar specific activities for both proteins, indicating that the effect of the X5 alteration is confined to increased FVIII secretion. Intravenous delivery in FVIII-deficient mice of liver-targeted adeno-associated virus (AAV) vectors designed to express BDD-FVIII-X5 or BDD-FVIII achieved substantially higher plasma FVIII activity levels for BDD-FVIII-X5, even when highly efficient codon-optimized F8 nucleotide sequences were employed. A comprehensive immunogenicity assessment using in vitro stimulation assays and various in vivo preclinical models of hemophilia A demonstrated that the BDD-FVIII-X5 variant does not exhibit an increased immunogenicity risk compared to BDD-FVIII. In conclusion, BDD-FVIII-X5 is an effective FVIII variant molecule that can be further developed for use in gene- and protein-based therapeutics for patients with hemophilia A.

4.
Mol Ther Methods Clin Dev ; 17: 581-588, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32280725

ABSTRACT

Gene therapy product release requires reliable and consistent demonstration of biopotency. In hemophilia B vectors, this is usually determined in vivo by measuring the plasma levels of the expressed human factor IX (FIX) transgene product in FIX knockout mice. To circumvent this laborious assay, we developed an in vitro method in which the HepG2 human liver cell line was infected with the vector, and the resulting FIX activity was determined in the conditioned medium using a chromogenic assay. The initial low sensitivity of the assay, particularly toward adeno-associated viral serotype 8 (AAV8), increased approximately 100-fold and allowed linear measurement in a broad range of multiplicities of infection. Statistical parameters indicated high assay repeatability (relative standard deviation (RSD) < 5%) and intra-assay reproducibility (RSD < 20%). To compare the performance of the in vitro and in vivo biopotency assay, we applied statistical analyses including regression techniques and variation decomposition to the results obtained for 25 AAV8-FIX vector lots (BAX 335). These showed a highly significant correlation, with the cell culture-based assay demonstrating less variation than the in vivo test. The in vitro assay thus constitutes a viable alternative to using animals for lot release testing.

5.
Hippocampus ; 28(11): 824-837, 2018 11.
Article in English | MEDLINE | ID: mdl-30024075

ABSTRACT

The sharp wave ripple complex in rodent hippocampus is associated with a network burst in CA3 (NB) that triggers a synchronous event in the CA1 population (SE). The number of CA1 pyramidal cells participating in a SE has been observed to follow a lognormal distribution. However, the origin of this skewed and heavy-tailed distribution of population synchrony in CA1 remains unknown. Because the size of SEs is likely to originate from the size of the NBs and the underlying neural circuitry, we model the CA3-CA1 circuit to study the underlying mechanisms and their functional implications. We show analytically that if the size of a NB in CA3 is distributed according to a normal distribution, then the size of the resulting SE in CA1 follows a lognormal distribution. Our model predicts the distribution of the NB size in CA3, which remains to be tested experimentally. Moreover, we show that a putative lognormal NB size distribution leads to an extremely heavy-tailed SE size distribution in CA1, contradicting experimental evidence. In conclusion, our model provides general insight on the origin of lognormally distributed network synchrony as a consequence of synchronous synaptic transmission of normally distributed input events.


Subject(s)
CA1 Region, Hippocampal/physiology , CA3 Region, Hippocampal/physiology , Models, Neurological , Animals , Computer Simulation , Membrane Potentials , Models, Statistical , Neurons/physiology , Rodentia , Synapses/physiology
6.
Sci Rep ; 8(1): 4609, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29545553

ABSTRACT

In computational neuroscience, synaptic plasticity rules are often formulated in terms of firing rates. The predominant description of in vivo neuronal activity, however, is the instantaneous rate (or spiking probability). In this article we resolve this discrepancy by showing that fluctuations of the membrane potential carry enough information to permit a precise estimate of the instantaneous rate in balanced networks. As a consequence, we find that rate based plasticity rules are not restricted to neuronal activity that is stable for hundreds of milliseconds to seconds, but can be carried over to situations in which it changes every few milliseconds. We illustrate this, by showing that a voltage-dependent realization of the classical BCM rule achieves input selectivity, even if stimulus duration is reduced to a few milliseconds each.


Subject(s)
Action Potentials , Learning/physiology , Models, Neurological , Neuronal Plasticity/physiology , Neurons/physiology , Synaptic Transmission/physiology , Algorithms , Animals , Neural Networks, Computer
7.
Front Neurosci ; 12: 961, 2018.
Article in English | MEDLINE | ID: mdl-30618583

ABSTRACT

The hippocampus is known to play a crucial role in the formation of long-term memory. For this, fast replays of previously experienced activities during sleep or after reward experiences are believed to be crucial. But how such replays are generated is still completely unclear. In this paper we propose a possible mechanism for this: we present a model that can store experienced trajectories on a behavioral timescale after a single run, and can subsequently bidirectionally replay such trajectories, thereby omitting any specifics of the previous behavior like speed, etc, but allowing repetitions of events, even with different subsequent events. Our solution builds on well-known concepts, one-shot learning and synfire chains, enhancing them by additional mechanisms using global inhibition and disinhibition. For replays our approach relies on dendritic spikes and cholinergic modulation, as supported by experimental data. We also hypothesize a functional role of disinhibition as a pacemaker during behavioral time.

8.
Int J Neural Syst ; 27(8): 1750044, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28982282

ABSTRACT

Sequences of precisely timed neuronal activity are observed in many brain areas in various species. Synfire chains are a well-established model that can explain such sequences. However, it is unknown under which conditions synfire chains can develop in initially unstructured networks by self-organization. This work shows that with spike-timing dependent plasticity (STDP), modulated by global population activity, long synfire chains emerge in sparse random networks. The learning rule fosters neurons to participate multiple times in the chain or in multiple chains. Such reuse of neurons has been experimentally observed and is necessary for high capacity. Sparse networks prevent the chains from being short and cyclic and show that the formation of specific synapses is not essential for chain formation. Analysis of the learning rule in a simple network of binary threshold neurons reveals the asymptotically optimal length of the emerging chains. The theoretical results generalize to simulated networks of conductance-based leaky integrate-and-fire (LIF) neurons. As an application of the emerged chain, we propose a one-shot memory for sequences of precisely timed neuronal activity.


Subject(s)
Action Potentials , Models, Neurological , Neuronal Plasticity/physiology , Neurons/physiology , Animals , Computer Simulation
9.
EMBO Mol Med ; 9(11): 1558-1573, 2017 11.
Article in English | MEDLINE | ID: mdl-28835507

ABSTRACT

Lentiviral vectors (LV) are powerful and versatile vehicles for gene therapy. However, their complex biological composition challenges large-scale manufacturing and raises concerns for in vivo applications, because particle components and contaminants may trigger immune responses. Here, we show that producer cell-derived polymorphic class-I major histocompatibility complexes (MHC-I) are incorporated into the LV surface and trigger allogeneic T-cell responses. By disrupting the beta-2 microglobulin gene in producer cells, we obtained MHC-free LV with substantially reduced immunogenicity. We introduce this targeted editing into a novel stable LV packaging cell line, carrying single-copy inducible vector components, which can be reproducibly converted into high-yield LV producers upon site-specific integration of the LV genome of interest. These LV efficiently transfer genes into relevant targets and are more resistant to complement-mediated inactivation, because of reduced content of the vesicular stomatitis virus envelope glycoprotein G compared to vectors produced by transient transfection. Altogether, these advances support scalable manufacturing of alloantigen-free LV with higher purity and increased complement resistance that are better suited for in vivo gene therapy.


Subject(s)
Gene Editing/methods , Genetic Vectors/metabolism , Lentivirus/genetics , Animals , CD55 Antigens/metabolism , Cell Line , Factor IX/genetics , Factor IX/metabolism , Genetic Therapy , Genetic Vectors/genetics , HEK293 Cells , Hemophilia B/therapy , Humans , Isoantigens/immunology , Membrane Cofactor Protein/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Complement 3b/metabolism , Transfection
10.
Front Comput Neurosci ; 11: 33, 2017.
Article in English | MEDLINE | ID: mdl-28555102

ABSTRACT

Hebbian changes of excitatory synapses are driven by and enhance correlations between pre- and postsynaptic neuronal activations, forming a positive feedback loop that can lead to instability in simulated neural networks. Because Hebbian learning may occur on time scales of seconds to minutes, it is conjectured that some form of fast stabilization of neural firing is necessary to avoid runaway of excitation, but both the theoretical underpinning and the biological implementation for such homeostatic mechanism are to be fully investigated. Supported by analytical and computational arguments, we show that a Hebbian spike-timing-dependent metaplasticity rule, accounts for inherently-stable, quick tuning of the total input weight of a single neuron in the general scenario of asynchronous neural firing characterized by UP and DOWN states of activity.

11.
Biol Cybern ; 111(3-4): 229-235, 2017 08.
Article in English | MEDLINE | ID: mdl-28432423

ABSTRACT

It is known that many neurons in the brain show spike trains with a coefficient of variation (CV) of the interspike times of approximately 1, thus resembling the properties of Poisson spike trains. Computational studies have been able to reproduce this phenomenon. However, the underlying models were too complex to be examined analytically. In this paper, we offer a simple model that shows the same effect but is accessible to an analytic treatment. The model is a random walk model with a reflecting barrier; we give explicit formulas for the CV in the regime of excess inhibition. We also analyze the effect of probabilistic synapses in our model and show that it resembles previous findings that were obtained by simulation.


Subject(s)
Action Potentials , Neurons/physiology , Models, Neurological , Synapses/metabolism
12.
Evol Comput ; 25(4): 587-606, 2017.
Article in English | MEDLINE | ID: mdl-27700278

ABSTRACT

Black-box complexity theory provides lower bounds for the runtime of black-box optimizers like evolutionary algorithms and other search heuristics and serves as an inspiration for the design of new genetic algorithms. Several black-box models covering different classes of algorithms exist, each highlighting a different aspect of the algorithms under considerations. In this work we add to the existing black-box notions a new elitist black-box model, in which algorithms are required to base all decisions solely on (the relative performance of) a fixed number of the best search points sampled so far. Our elitist model thus combines features of the ranking-based and the memory-restricted black-box models with an enforced usage of truncation selection. We provide several examples for which the elitist black-box complexity is exponentially larger than that of the respective complexities in all previous black-box models, thus showing that the elitist black-box complexity can be much closer to the runtime of typical evolutionary algorithms. We also introduce the concept of p-Monte Carlo black-box complexity, which measures the time it takes to optimize a problem with failure probability at most p. Even for small  p, the p-Monte Carlo black-box complexity of a function class [Formula: see text] can be smaller by an exponential factor than its typically regarded Las Vegas complexity (which measures the expected time it takes to optimize [Formula: see text]).


Subject(s)
Algorithms , Computer Simulation , Evolution, Molecular , Monte Carlo Method , Probability
13.
Front Comput Neurosci ; 8: 140, 2014.
Article in English | MEDLINE | ID: mdl-25426060

ABSTRACT

We present a high-capacity model for one-shot association learning (hetero-associative memory) in sparse networks. We assume that basic patterns are pre-learned in networks and associations between two patterns are presented only once and have to be learned immediately. The model is a combination of an Amit-Fusi like network sparsely connected to a Willshaw type network. The learning procedure is palimpsest and comes from earlier work on one-shot pattern learning. However, in our setup we can enhance the capacity of the network by iterative retrieval. This yields a model for sparse brain-like networks in which populations of a few thousand neurons are capable of learning hundreds of associations even if they are presented only once. The analysis of the model is based on a novel result by Janson et al. on bootstrap percolation in random graphs.

14.
PLoS One ; 8(12): e80694, 2013.
Article in English | MEDLINE | ID: mdl-24324621

ABSTRACT

For every engineer it goes without saying: in order to build a reliable system we need components that consistently behave precisely as they should. It is also well known that neurons, the building blocks of brains, do not satisfy this constraint. Even neurons of the same type come with huge variances in their properties and these properties also vary over time. Synapses, the connections between neurons, are highly unreliable in forwarding signals. In this paper we argue that both these fact add variance to neuronal processes, and that this variance is not a handicap of neural systems, but that instead predictable and reliable functional behavior of neural systems depends crucially on this variability. In particular, we show that higher variance allows a recurrently connected neural population to react more sensitively to incoming signals, and processes them faster and more energy efficient. This, for example, challenges the general assumption that the intrinsic variability of neurons in the brain is a defect that has to be overcome by synaptic plasticity in the process of learning.


Subject(s)
Genetic Heterogeneity , Models, Neurological , Nerve Net/physiology , Neuronal Plasticity/genetics , Neurons/metabolism , Animals , Brain/physiology , Computer Simulation , Excitatory Postsynaptic Potentials/physiology , Humans , Learning/physiology , Neurons/cytology , Poisson Distribution , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/physiology , Synaptic Transmission/physiology , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , gamma-Aminobutyric Acid/metabolism
15.
Cell Microbiol ; 9(7): 1753-65, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17346308

ABSTRACT

The bacteriophage-encoded holin proteins are known to promote bacterial cell lysis by forming lesions within the cytoplasmic membrane. Recently, we have shown that the bacteriophage lambda-holin protein exerts cytotoxic activity also in eukaryotic cells accounting for a reduced tumour growth in vivo. In order to elucidate the mechanisms of lambda-holin-induced mammalian cell death, detailed biochemical and morphological analyses were performed. Colocalization analyses by subcellular fractionation and organelle-specific fluorescence immunocytochemistry indicated the presence of the lambda-holin protein in the endoplasmic reticulum and in mitochondria. Functional studies using the mitochondria-specific fluorochrome JC-1 demonstrated a loss of mitochondrial transmembrane potential in response to lambda-holin expression. Morphologically, these cells exhibited unfragmented nuclei but severe cytoplasmic vacuolization representing signs of oncosis/necrosis rather than apoptosis. Consistently, Western blot analyses indicated neither an activation of effector caspases 3 and 7 nor cleavage of the respective substrate poly(ADP-ribose) polymerase (PARP) in an apoptosis-specific manner. These findings suggest that the lambda-holin protein mediates a caspase-independent non-apoptotic mode of cell death.


Subject(s)
Bacteriophage lambda/pathogenicity , Caspases/metabolism , Eukaryotic Cells/pathology , Necrosis , Viral Proteins/toxicity , Apoptosis , Bacteriophage lambda/metabolism , Cell Line, Tumor/pathology , Endoplasmic Reticulum/metabolism , HeLa Cells/pathology , Humans , Membrane Potentials/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Viral Proteins/metabolism , Viral Proteins/pharmacology
16.
Biochem Pharmacol ; 72(7): 893-901, 2006 Sep 28.
Article in English | MEDLINE | ID: mdl-16887103

ABSTRACT

Cytochrome P450 (P450) enzymes are often used in suicide gene cancer therapy strategies to convert an inactive prodrug into its therapeutic active metabolites. However, P450 activity is dependent on electrons supplied by cytochrome P450 reductase (CPR). Since endogenous CPR activity may not be sufficient for optimal P450 activity, the overexpression of additional CPR has been considered to be a valuable approach in gene directed enzyme prodrug therapy (GDEPT). We have analysed a set of cell lines for the effects of CPR on cytochrome P450 isoform 2B1 (CYP2B1) activity. CPR transfected human embryonic kidney 293 (HEK293) cells showed both strong CPR expression in Western blot analysis and 30-fold higher activity in cytochrome c assays as compared to parental HEK293 cells. In contrast, resorufin and 4-hydroxy-ifosfamide assays revealed that CYP2B1 activity was up to 10-fold reduced in CPR/CYP2B1 cotransfected HEK293 cells as compared to cells transfected with the CYP2B1 expression plasmid alone. Determination of ifosfamide-mediated effects on cell viability allowed independent confirmation of the reduction in CYP2B1 activity upon CPR coexpression. Inhibition of CYP2B1 activity by CPR was also observed in CYP2B1/CPR transfected or infected pancreatic tumour cell lines Panc-1 and Pan02, the human breast tumour cell line T47D and the murine embryo fibroblast cell line NIH3T3. A CPR mediated increase in CYP2B1 activity was only observed in the human breast tumour cell line Hs578T. Thus, our data reveal an effect of CPR on CYP2B1 activity dependent on the cell type used and therefore demand a careful evaluation of the therapeutic benefit of combining cytochrome P450 and CPR in respective in vivo models in each individual target tissue to be treated.


Subject(s)
Cytochrome P-450 CYP2B1/metabolism , Genetic Therapy/methods , NADPH-Ferrihemoprotein Reductase/metabolism , Prodrugs/metabolism , Animals , Antineoplastic Agents, Alkylating/metabolism , Antineoplastic Agents, Alkylating/pharmacology , Blotting, Western , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Cytochrome P-450 CYP2B1/genetics , Cytochrome c Group/metabolism , Dose-Response Relationship, Drug , Humans , Ifosfamide/metabolism , Ifosfamide/pharmacology , Mice , NADPH-Ferrihemoprotein Reductase/genetics , NIH 3T3 Cells , Oxazines/metabolism , Plasmids/genetics , Prodrugs/therapeutic use , Transfection
17.
Ophthalmic Res ; 37(6): 301-9, 2005.
Article in English | MEDLINE | ID: mdl-16118513

ABSTRACT

Sox2 transcription factor is expressed in neural tissues and sensory epithelia from the early stages of development. Particularly, it is known to activate crystallin gene expression and to be involved in differentiation of lens and neural tissues. However, its place in the signaling cascade is not well understood. Here, we report about the response of its promoter to the presence of other transcription factors, AP2alpha, Msx2, Pax6, Prox1 and Six3, in a transient reporter gene assay using HEK293 cells as recipient cells. Taking our data together, AP2, Pax6 and PROX1 can activate the Sox2 promoter. Msx2 has an inhibitory effect, whereas Six3 does not affect the Sox2 promoter. These data indicate a common activating cascade at least for AP2, Pax6, Prox1 and Sox2.


Subject(s)
DNA-Binding Proteins/genetics , DNA-Binding Proteins/pharmacology , Eye Proteins/pharmacology , Gene Expression Regulation/drug effects , HMGB Proteins/genetics , Homeodomain Proteins/pharmacology , Nerve Tissue Proteins/pharmacology , Paired Box Transcription Factors/pharmacology , Repressor Proteins/pharmacology , Transcription Factors/genetics , Blotting, Western , Cell Line , Humans , Kidney/embryology , PAX6 Transcription Factor , Plasmids , SOXB1 Transcription Factors , Transfection , Tumor Suppressor Proteins , Homeobox Protein SIX3
18.
Anal Biochem ; 343(1): 116-24, 2005 Aug 01.
Article in English | MEDLINE | ID: mdl-15955524

ABSTRACT

Two optimized forms of green fluorescence proteins (GFP), enhanced GFP (EGFP) and humanized Renilla GFP (hrGFP), were used to track expression of cytochrome P450 2B1 (CYP2B1), an endoplasmic reticulum membrane-bound protein. In transiently expressing HEK293 cells we show that CYP2B1-GFP fusion proteins are stable and functional, whereas the vice-versa-arranged GFP-CYP2B1 fusions are not. The CYP2B1-hrGFP fusion protein is characterized by reduction in mean fluorescence intensity (MFI) to less than 20% of that of the hrGFP protein alone, accompanied by a 50% loss of CYP2B1 activity. Exchanging the linker for an alpha-helical peptide structure between CYP2B1 and hrGFP does not improve fusion protein activity. Insertion of a short linker (five amino acids) increases reporter protein fluorescence intensity twofold without improving CYP2B1 activity. Introduction of the foot and mouth disease virus 2A sequence providing cotranslational cleavage led to an unstable hrGFP-2A protein, whereas the corresponding EGFP-2A protein was stable and yielded an MFI superior to those of all other fusion constructs tested. CYP2B1 activity of the EGFP-2A-CYP2B1 protein was in the range of that of the unmodified CYP2B1. These data indicate that the protein arrangement EGFP-2A-CYP2B1 is superior to others, since it is most active and visible, which is essential for an effective tracking of the CYP2B1 enzyme.


Subject(s)
Cytochrome P-450 CYP2B1/metabolism , Endoplasmic Reticulum/enzymology , Gene Expression , Animals , Cell Line , Cytochrome P-450 CYP2B1/genetics , Endoplasmic Reticulum/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...