Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Sci (Lond) ; 135(15): 1897-1914, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34318878

ABSTRACT

The anthracycline (ANT) anticancer drugs such as doxorubicin or daunorubicin (DAU) can cause serious myocardial injury and chronic cardiac dysfunction in cancer survivors. A bisdioxopiperazine agent dexrazoxane (DEX) has been developed as a cardioprotective drug to prevent these adverse events, but it is uncertain whether it is the best representative of the class. The present study used a rabbit model of chronic ANT cardiotoxicity to examine another bisdioxopiperazine compound called GK-667 (meso-(butane-2,3-diylbis(2,6-dioxopiperazine-4,1-diyl))bis(methylene)-bis(2-aminoacetate) hydrochloride), a water-soluble prodrug of ICRF-193 (meso-4,4'-(butan-2,3-diyl)bis(piperazine-2,6-dione)), as a potential cardioprotectant. The cardiotoxicity was induced by DAU (3 mg/kg, intravenously, weekly, 10 weeks), and GK-667 (1 or 5 mg/kg, intravenously) was administered before each DAU dose. The treatment with GK-667 was well tolerated and provided full protection against DAU-induced mortality and left ventricular (LV) dysfunction (determined by echocardiography and LV catheterization). Markers of cardiac damage/dysfunction revealed minor cardiac damage in the group co-treated with GK-667 in the lower dose, whereas almost full protection was achieved with the higher dose. This was associated with similar prevention of DAU-induced dysregulation of redox and calcium homeostasis proteins. GK-667 dose-dependently prevented tumor suppressor p53 (p53)-mediated DNA damage response in the LV myocardium not only in the chronic experiment but also after single DAU administration. These effects appear essential for cardioprotection, presumably because of the topoisomerase IIß (TOP2B) inhibition provided by its active metabolite ICRF-193. In addition, GK-667 administration did not alter the plasma pharmacokinetics of DAU and its main metabolite daunorubicinol (DAUol) in rabbits in vivo. Hence, GK-667 merits further investigation as a promising drug candidate for cardioprotection against chronic ANT cardiotoxicity.


Subject(s)
Cardiomyopathies/prevention & control , DNA Damage , Diketopiperazines/pharmacology , Myocytes, Cardiac/drug effects , Prodrugs/pharmacology , Topoisomerase II Inhibitors/pharmacology , Ventricular Dysfunction, Left/prevention & control , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects , Animals , Cardiomyopathies/chemically induced , Cardiomyopathies/metabolism , Cardiomyopathies/physiopathology , Cardiotoxicity , Chronic Disease , Daunorubicin , Disease Models, Animal , Fibrosis , HL-60 Cells , Humans , Male , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Rabbits , Tumor Suppressor Protein p53/metabolism , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/physiopathology
2.
Talanta ; 223(Pt 2): 121748, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33298272

ABSTRACT

Electromembrane extraction (EME) of the polar zwitterionic drugs, anthracyclines (ANT, doxorubicin, daunorubicin and its metabolite daunorubicinol), from rabbit plasma was investigated. The optimized EME was compared to conventional sample pretreatment techniques such as protein precipitation (PP) and liquid-liquid extraction (LLE), mainly in terms of extraction reliability, recovery and matrix effect. In addition, phospholipids profile in the individual extracts was evaluated. The extracted samples were analyzed using UHPLC-MS/MS with electrospray ionization in positive ion mode. The method was validated within the concentration range of 0.25-1000 ng/mL for all tested ANT. Compared with PP and LLE, the EME provided high extraction recovery (more than 80% for all ANT) and excellent sample clean-up (matrix effect were 100 ± 10% with RSD values lower than 4% for all ANT). Furthermore, only negligible amounts of phospholipids were detected in the EME samples. Finally, practical applicability of EME was proved by analysis of plasma samples taken from a pilot in vivo study in rabbits. Consistent results were obtained when using both EME and LLE to extract the plasma prior to the analysis, which further confirmed high reliability of EME. This study clearly showed that EME is a simple, rapid, repeatable technique for extraction of ANT from plasma and it is an up to date alternative to routine conventional extraction techniques.


Subject(s)
Pharmaceutical Preparations , Tandem Mass Spectrometry , Animals , Anthracyclines , Membranes, Artificial , Rabbits , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...