Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Neuropsychopharmacol ; 26(12): 828-839, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37864842

ABSTRACT

BACKGROUND: There is a strong link between chronic stress and vulnerability to drug abuse and addiction. Corticotropin releasing factor (CRF) is central to the stress response that contributes to continuation and relapse to heroin abuse. Chronic heroin exposure can exacerbate CRF production, leading to dysregulation of the midbrain CRF-dopamine-glutamate interaction. METHODS: Here we investigated the role of midbrain CRF1 receptors in heroin self-administration and assessed neuroplasticity in CRF1 receptor expression in key opioid addiction brain regions. RESULTS: Infusions of antalarmin (a CRF1 receptor antagonist) into the ventral tegmental area (VTA) dose dependently reduced heroin self-administration in rats but had no impact on food reinforcement or locomotor activity in rats. Using RNAscope in situ hybridization, we found that heroin, but not saline, self-administration upregulated CRF1 receptor mRNA in the VTA, particularly on dopamine neurons. AMPA GluR1 and dopamine reuptake transporter mRNA in VTA neurons were not affected by heroin. The western-blot assay showed that CRF1 receptors were upregulated in the VTA and nucleus accumbens. No significant changes in CRF1 protein expression were detected in the prefrontal cortex, insula, dorsal hippocampus, and substantia nigra. In addition, we found that 15 days of environmental enrichment implemented after heroin self-administration does not reverse upregulation of VTA CRF1 receptor mRNA but it downregulates dopamine transporter mRNA. CONCLUSIONS: Overall, these data suggest that heroin self-administration requires stimulation of VTA CRF1 receptors and upregulates their expression in brain regions involved in reinforcement. Such long-lasting neuroadaptations may contribute to continuation of drug use and relapse due to stress exposure and are not easily reversed by EE exposure.


Subject(s)
Corticotropin-Releasing Hormone , Heroin , Rats , Animals , Corticotropin-Releasing Hormone/metabolism , Heroin/pharmacology , Heroin/metabolism , Dopamine/metabolism , Ventral Tegmental Area , Self Administration , Recurrence , RNA, Messenger/metabolism
2.
Int J Neuropsychopharmacol ; 26(1): 80-90, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36402549

ABSTRACT

BACKGROUND: Reward-related learning, where animals form associations between rewards and stimuli (i.e., conditioned stimuli [CS]) that predict or accompany those rewards, is an essential adaptive function for survival. METHODS: In this study, we investigated the mechanisms underlying the acquisition and performance of conditioned approach learning with a focus on the role of muscarinic acetylcholine (mACh) and NMDA glutamate receptors in the substantia nigra (SN), a brain region implicated in reward and motor processes. RESULTS: Using RNAscope in situ hybridization assays, we found that dopamine neurons of the SN express muscarinic (mACh5), NMDA2a, NMDA2b, and NMDA2d receptor mRNA but not mACh4. NMDA, but not mACh5, receptor mRNA was also found on SN GABA neurons. In a conditioned approach paradigm, rats were exposed to 3 or 7 conditioning sessions during which light/tone (CS) presentations were paired with delivery of food pellets, followed by a test session with CS-only presentations. Intra-SN microinjections of scopolamine (a mACh receptor antagonist) or AP-5 (a NMDA receptor antagonist) were made either prior to each conditioning session (to test their effects on acquisition) or prior to the CS-only test (to test their effects on expression of the learned response). Scopolamine and AP-5 produced dose-dependent significant reductions in the acquisition, but not performance, of conditioned approach. CONCLUSIONS: These results suggest that SN mACh and NMDA receptors are key players in the acquisition, but not the expression, of reward-related learning. Importantly, these findings redefine the role of the SN, which has traditionally been known for its involvement in motor processes, and suggest that the SN possesses attributes consistent with a function as a hub of integration of primary reward and CS signals.


Subject(s)
N-Methylaspartate , Receptors, N-Methyl-D-Aspartate , Rats , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , Reward , Scopolamine/pharmacology , Cholinergic Agents , Substantia Nigra/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...