Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 54(74): 10463-10466, 2018 Sep 13.
Article in English | MEDLINE | ID: mdl-30156229

ABSTRACT

Compared to tedious, multi-step treatments for electroless gold plating of traditional thermoplastics, this communication describes a simpler three-step procedure for 3D printed crosslinked polyacrylate substrates. This allows for the synthesis of ultralight gold foam microlattice materials with great potential for architecture-sensitive applications in future energy, catalysis, and sensing.

2.
Macromol Rapid Commun ; 39(4)2018 Feb.
Article in English | MEDLINE | ID: mdl-29210493

ABSTRACT

Silicone elastomers have broad versatility within a variety of potential advanced materials applications, such as soft robotics, biomedical devices, and metamaterials. A series of custom 3D printable silicone inks with tunable stiffness is developed, formulated, and characterized. The silicone inks exhibit excellent rheological behavior for 3D printing, as observed from the printing of porous structures with controlled architectures. Herein, the capability to tune the stiffness of printable silicone materials via careful control over the chemistry, network formation, and crosslink density of the ink formulations in order to overcome the challenging interplay between ink development, post-processing, material properties, and performance is demonstrated.


Subject(s)
Biocompatible Materials/chemistry , Elastomers/chemistry , Silicones/chemistry , Biocompatible Materials/chemical synthesis , Elastomers/chemical synthesis , Ink , Porosity , Printing, Three-Dimensional , Rheology , Silicones/chemical synthesis
3.
Nat Commun ; 7: 11900, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27301270

ABSTRACT

An industrial process for the selective activation of methane under mild conditions would be highly valuable for controlling emissions to the environment and for utilizing vast new sources of natural gas. The only selective catalysts for methane activation and conversion to methanol under mild conditions are methane monooxygenases (MMOs) found in methanotrophic bacteria; however, these enzymes are not amenable to standard enzyme immobilization approaches. Using particulate methane monooxygenase (pMMO), we create a biocatalytic polymer material that converts methane to methanol. We demonstrate embedding the material within a silicone lattice to create mechanically robust, gas-permeable membranes, and direct printing of micron-scale structures with controlled geometry. Remarkably, the enzymes retain up to 100% activity in the polymer construct. The printed enzyme-embedded polymer motif is highly flexible for future development and should be useful in a wide range of applications, especially those involving gas-liquid reactions.


Subject(s)
Bioprinting , Methane/metabolism , Methanol/metabolism , Oxygenases/metabolism , Bioreactors , Enzyme Stability , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Methylococcus/enzymology , Particulate Matter/chemistry , Polyethylene Glycols/chemistry
4.
J Org Chem ; 80(23): 11773-8, 2015 Dec 04.
Article in English | MEDLINE | ID: mdl-26322681

ABSTRACT

The dynamics of reactions at or in the immediate vicinity of transition states are critical to reaction rates and product distributions, but direct experimental probes of those dynamics are rare. Here, s-trans, s-trans 1,3-diradicaloid transition states are trapped by tension along the backbone of purely cis-substituted gem-difluorocyclopropanated polybutadiene using the extensional forces generated by pulsed sonication of dilute polymer solutions. Once released, the branching ratio between symmetry-allowed disrotatory ring closing (of which the trapped diradicaloid structure is the transition state) and symmetry-forbidden conrotatory ring closing (whose transition state is nearby) can be inferred. Net conrotatory ring closing occurred in 5.0 ± 0.5% of the released transition states, in excellent agreement with ab initio molecular dynamics simulations.

5.
ACS Appl Mater Interfaces ; 5(16): 8111-9, 2013 Aug 28.
Article in English | MEDLINE | ID: mdl-23895541

ABSTRACT

We report on simple and efficient routes to dope polydicyclopentadiene (PDCPD)-based aerogels and their coatings with high-Z tracer elements. Initially, direct halogenation of PDCPD wet gels and aerogels with elemental iodine or bromine was studied. Although several pathways were identified that allowed doping of PDCPD aerogels by direct addition of bromine or iodine to the unsaturated polymer backbone, they all provided limited control over the amount and uniformity of doping, especially at very low dopant concentrations. Deterministic control over the doping level in polymeric aerogels and aerogel coatings was then achieved by developing a copolymerization approach with iodine and tin containing comonomers. Our results highlight the versatility of the ring-opening metathesis polymerization (ROMP)-based copolymerization approach in terms of functionalization and doping of low density polymeric aerogels and their coatings.


Subject(s)
Indenes/chemistry , Polymers/chemistry , Trace Elements/chemistry , Gels/chemistry , Iodides/chemistry , Polymerization
6.
Nat Chem ; 5(2): 110-4, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23344431

ABSTRACT

Mechanical forces along a polymer backbone can be used to bring about remarkable reactivity in embedded mechanically active functional groups, but little attention has been paid to how a given polymer backbone delivers that force to the reactant. Here, single-molecule force spectroscopy was used to directly quantify and compare the forces associated with the ring opening of gem-dibromo and gem-dichlorocyclopropanes affixed along the backbone of cis-polynorbornene and cis-polybutadiene. The critical force for isomerization drops by about one-third in the polynorbornene scaffold relative to polybutadiene. The root of the effect lies in more efficient chemomechanical coupling through the polynorbornene backbone, which acts as a phenomenological lever with greater mechanical advantage than polybutadiene. The experimental results are supported computationally and provide the foundation for a new strategy by which to engineer mechanochemical reactivity.


Subject(s)
Butadienes/chemistry , Elastomers/chemistry , Plastics/chemistry , Computer Simulation , Mechanics , Molecular Structure , Spectrum Analysis/methods
7.
J Am Chem Soc ; 134(23): 9577-80, 2012 Jun 13.
Article in English | MEDLINE | ID: mdl-22650366

ABSTRACT

Epoxidized polybutadiene and epoxidized polynorbornene were subjected to pulsed ultrasound in the presence of small molecules capable of being trapped by carbonyl ylides. When epoxidized polybutadiene was sonicated, there was no observable small molecule addition to the polymer. Concurrently, no appreciable isomerization (cis to trans epoxide) was observed, indicating that the epoxide rings along the backbone are not mechanically active under the experimental conditions employed. In contrast, when epoxidized polynorbornene was subjected to the same conditions, both addition of ylide trapping reagents and net isomerization of cis to trans epoxide were observed. The results demonstrate the mechanical activity of epoxides, show that mechanophore activity is determined not only by the functional group but also the polymer backbone in which it is embedded, and facilitate a characterization of the reactivity of the ring-opened dialkyl epoxide.

8.
ACS Macro Lett ; 1(1): 23-27, 2012 Jan 17.
Article in English | MEDLINE | ID: mdl-35578474

ABSTRACT

The high shear forces generated during the pulsed ultrasound of dilute polymer solutions lead to large tensile forces that are focused near the center of the polymer chain, but quantitative experimental evidence regarding the force distribution is rare. Here, pulsed ultrasound of quantitatively geminal-dihalocyclopropanated (gDHC) polybutadiene provides insights into the distribution. Pulsed ultrasound leads to the mechanochemical ring-opening of the gDHC mechanophore to a 2,3-dihaloalkene. The alkene product is then degraded through ozonolysis to leave behind only those stretches of the polymer that have not experienced large enough forces to be activated. Microstructural and molecular weight analysis reveals that the activated and unactivated regions of the polymer are continuous, indicating a smooth and monotonic force distribution from the midchain peak toward the polymer ends. When coupled to chain scission, the net process constitutes the rapid, specific, and reagentless conversion of a single homopolymer into block copolymers. Despite their compositional polydispersity, the sonicated polymers assemble into ordered lamellar phases that are characterized by small-angle X-ray scattering.

9.
J Am Chem Soc ; 133(10): 3222-5, 2011 Mar 16.
Article in English | MEDLINE | ID: mdl-21341786

ABSTRACT

Tension along a polymer chain traps neighboring s-trans/s-trans-1,3-diradicals from the mechanically induced ring opening of gem-difluorocyclopropanes (gDFCs). The diradicals correspond to the transition states of the force-free thermal isomerization reactions of gDFCs, and the tension trapping allows a new disproportionation reaction between two simultaneously trapped diradicals to take place.


Subject(s)
Cyclopropanes/chemistry , Polymers/chemistry , Hot Temperature , Isomerism
10.
J Am Chem Soc ; 132(45): 15936-8, 2010 Nov 17.
Article in English | MEDLINE | ID: mdl-20977189

ABSTRACT

Single-molecule force spectroscopy is used to observe the irreversible extension of a gem-dibromocyclopropane (gDBC)-functionalized polybutadiene under tension, a process akin to polymer necking at a single-molecule level. The extension of close to 28% in the contour length of the polymer backbone occurs at roughly 1.2 nN (tip velocity of 3 µm/s) and is attributed to the force-induced isomerization of the gDBCs into 2,3-dibromoalkenes. The rearrangement represents a possible new mechanism for localized stress relief in polymers and polymer networks under load, and the quantification of the force dependency provides a benchmark value for further studies of mechanically triggered chemistry in bulk polymers.


Subject(s)
Butadienes/chemistry , Cyclopropanes/chemistry , Elastomers/chemistry , Stress, Mechanical , Magnetic Resonance Spectroscopy , Microscopy, Atomic Force
11.
Science ; 329(5995): 1057-60, 2010 Aug 27.
Article in English | MEDLINE | ID: mdl-20798315

ABSTRACT

Transition state structures are central to the rates and outcomes of chemical reactions, but their fleeting existence often leaves their properties to be inferred rather than observed. By treating polybutadiene with a difluorocarbene source, we embedded gem-difluorocyclopropanes (gDFCs) along the polymer backbone. We report that mechanochemical activation of the polymer under tension opens the gDFCs and traps a 1,3-diradical that is formally a transition state in their stress-free electrocyclic isomerization. The trapped diradical lives long enough that we can observe its noncanonical participation in bimolecular addition reactions. Furthermore, the application of a transient tensile force induces a net isomerization of the trans-gDFC into its less-stable cis isomer, leading to the counterintuitive result that the gDFC contracts in response to a transient force of extension.

12.
J Org Chem ; 74(23): 8924-34, 2009 Dec 04.
Article in English | MEDLINE | ID: mdl-19886635

ABSTRACT

The flexible, electropositive cavity of linear 1,4-diaryl-1,2,3-triazole oligomers provides a suitable host for complexation of various anions. The binding affinities for various combinations of oligomer and anion were determined by (1)H NMR titrations. Effective ionic radius is found to be a primary determinant of the relative binding interactions of various guests, with small but measurable deviations in the case of nonspherical anions. Solvent effects are significant, and the strength of the binding interaction is found to depend directly on the donor ability of the solvent. A picture emerges in which anion binding can be effectively interpreted in terms of a competition between two solvation spheres: one provided by the solvent and a second dominated by a folded cavity lined with electropositive 1,2,3-triazole CH protons. Implications for rigid macrocycles and other multivalent hosts are discussed.


Subject(s)
Anions/chemistry , Polymers/chemistry , Triazoles/chemistry , Binding Sites , Macrocyclic Compounds , Magnetic Resonance Spectroscopy , Molecular Conformation , Solvents
13.
J Am Chem Soc ; 131(31): 10818-9, 2009 Aug 12.
Article in English | MEDLINE | ID: mdl-19603747

ABSTRACT

When gem-dichlorocyclopropane (gDCC) copolymers derived from polybutadiene are subjected to ultrasonication, the gDCCs undergo ring opening to form 2,3-dichloroalkenes. The reactivity is not observed in low-molecular-weight (6.5 kDa) copolymers or side-chain gDCCs, consistent with mechanically induced reactivity due to the elongational strain of the polymers in the sonication flow fields. The ring openings occur several hundred times more frequently than polymer chain scission, and cis-coupled gDCCs are slightly more likely to react than their trans isomers. The ability to dramatically and specifically alter the structure of the polymer backbone through a coupled restoring force suggests new routes to postsynthetic polymer modification and motivates the design of easily scalable mechanophores for applications in stress-responsive polymers.

SELECTION OF CITATIONS
SEARCH DETAIL
...