Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 11(9)2022 05 07.
Article in English | MEDLINE | ID: mdl-35563883

ABSTRACT

Regeneration of articular cartilage remains challenging. The aim of this study was to increase the stability of pure bioactive glass (BG) scaffolds by means of solvent phase polymer infiltration and to maintain cell adherence on the glass struts. Therefore, BG scaffolds either pure or enhanced with three different amounts of poly(D-L-lactide-co-glycolide) (PLGA) were characterized in detail. Scaffolds were seeded with primary porcine articular chondrocytes (pACs) and human mesenchymal stem cells (hMSCs) in a dynamic long-term culture (35 days). Light microscopy evaluations showed that PLGA was detectable in every region of the scaffold. Porosity was greater than 70%. The biomechanical stability was increased by polymer infiltration. PLGA infiltration did not result in a decrease in viability of both cell types, but increased DNA and sulfated glycosaminoglycan (sGAG) contents of hMSCs-colonized scaffolds. Successful chondrogenesis of hMSC-colonized scaffolds was demonstrated by immunocytochemical staining of collagen type II, cartilage proteoglycans and the transcription factor SOX9. PLGA-infiltrated scaffolds showed a higher relative expression of cartilage related genes not only of pAC-, but also of hMSC-colonized scaffolds in comparison to the pure BG. Based on the novel data, our recommendation is BG scaffolds with single infiltrated PLGA for cartilage tissue engineering.


Subject(s)
Cartilage, Articular , Mesenchymal Stem Cells , Animals , Cartilage, Articular/metabolism , Chondrogenesis , Collagen Type II/metabolism , Dioxanes , Mesenchymal Stem Cells/metabolism , Swine , Tissue Engineering , Tissue Scaffolds/chemistry
2.
Mater Sci Eng C Mater Biol Appl ; 130: 112421, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34702508

ABSTRACT

Cartilage injuries remain challenging since the regenerative capacity of cartilage is extremely low. The aim was to design a novel type of bioactive glass (BG) scaffold with suitable topology that allows the formation of cartilage-specific extracellular matrix (ECM) after colonization with chondrogenic cells for cartilage repair. Highly porous scaffolds with interconnecting pores consisting of 100 % BG were manufactured using a melting, milling, sintering and leaching technique. Scaffolds were colonized with porcine articular chondrocytes (pAC) and undifferentiated human mesenchymal stromal cells (hMSC) for up to 35 days. Scaffolds displayed high cytocompatibility with no major pH shift. Scanning electron microscopy revealed the intimate pAC-scaffold interaction with typical cell morphology. After 14 days MSCs formed cell clusters but still expressed cartilage markers. Both cell types showed aggrecan, SOX9 gene and protein expression, cartilage proteoglycan and sulfated glycosaminoglycan synthesis for the whole culture time. Despite type II collagen gene expression could not anymore be detected at day 35, protein synthesis was visualized for both cell types during the whole culturing period, increasing in pAC and declining after day 14 in hMSC cultures. The novel BG scaffold was stable, cytocompatible and cartilage-specific protein synthesis indicated maintenance of pAC's differentiated phenotype and chondro-instructive effects on hMSCs.


Subject(s)
Cartilage, Articular , Tissue Engineering , Animals , Cartilage , Cells, Cultured , Chondrocytes , Chondrogenesis , Humans , Porosity , Swine , Tissue Scaffolds
3.
Materials (Basel) ; 14(8)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33917249

ABSTRACT

A new series of soda-lime glass naturally doped with Nd and doped with 0.2 wt% of Eu2O3 was densified in a multi-anvil press up to 21 GPa. The densities of the millimetric samples were precisely measured using a floatation method in a heavy liquid made with sodium polytungstate. The obtained densification curve is significantly different from the calibration previously reported, reaching a maximum densification saturation of 3.55 ± 0.14%. This difference could be due to better hydrostatic conditions realized in this new study. The densified samples were characterized using Raman and Brillouin spectroscopy, as well as the emission of both Eu3+ and Nd3+. The evolution of the spectra was evaluated using integration methods to reduce error bars. The relative precision of the calibration curves is discussed. The evolution of Nd3+ transition was found to be the most sensitive calibration. Linear dependence with the density was found for all observables, with exception for Brillouin spectroscopy showing a divergent behavior. The Brillouin shift shows an unreported minimum for a densification ~0.4%.

SELECTION OF CITATIONS
SEARCH DETAIL
...