Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 5(32): 20014-20020, 2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32832755

ABSTRACT

Here, we report the presence of ferromagnetism in hybrid nickel-boron nitride nanotubes (BNNTs) with an ordered structure, synthesized by chemical vapor deposition using elemental boron, nickel oxide as the catalyst, and ammonia gas as the source for nitrogen. In previous studies, the nanotubes were synthesized with two metal oxide catalysts, whereas here, only a single catalyst was used. The nanotube's structure was determined by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. Purity of the nanotubes synthesized at 1150 °C was exceptional and this was determined by Raman spectroscopy. The average diameter of the nanotubes was 63 nm. Based on the magnetic studies carried out, it can be confirmed that the synthesized hybrid material is ferromagnetic at room temperature. Cyclic voltammetry was carried out to confirm the dielectric nature of the nanotubes. These materials could pave ways to nanoscale devices. The well-known thermal stability of BNNTs would play a vital role in preventing thermal failures in such small-scale devices where overheating is a major concern. The presence of semiconducting and magnetic properties in a single material could be confirmed, which might be highly significant in the field of spintronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...