Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36769057

ABSTRACT

The levels of several glial and neuronal plasma biomarkers have been found to increase during the acute phase in COVID-19 patients with neurological symptoms. However, replications in patients with minor or non-neurological symptoms are needed to understand their potential as indicators of CNS injury or vulnerability. Plasma levels of glial fibrillary acidic protein (GFAP), neurofilament light chain protein (NfL), and total Tau (T-tau) were determined by Single molecule array (Simoa) immunoassays in 45 samples from COVID-19 patients in the acute phase of infection [moderate (n = 35), or severe (n = 10)] with minor or non-neurological symptoms; in 26 samples from fully recovered patients after ~2 months of clinical follow-up [moderate (n = 23), or severe (n = 3)]; and in 14 non-infected controls. Plasma levels of the SARS-CoV-2 receptor, angiotensin-converting enzyme 2 (ACE2), were also determined by Western blot. Patients with COVID-19 without substantial neurological symptoms had significantly higher plasma concentrations of GFAP, a marker of astrocytic activation/injury, and of NfL and T-tau, markers of axonal damage and neuronal degeneration, compared with controls. All these biomarkers were correlated in COVID-19 patients at the acute phase. Plasma GFAP, NfL and T-tau levels were all normalized after recovery. Recovery was also observed in the return to normal values of the quotient between the ACE2 fragment and circulating full-length species, following the change noticed in the acute phase of infection. None of these biomarkers displayed differences in plasma samples at the acute phase or recovery when the COVID-19 subjects were sub-grouped according to occurrence of minor symptoms at re-evaluation 3 months after the acute episode (so called post-COVID or "long COVID"), such as asthenia, myalgia/arthralgia, anosmia/ageusia, vision impairment, headache or memory loss. Our study demonstrated altered plasma GFAP, NfL and T-tau levels in COVID-19 patients without substantial neurological manifestation at the acute phase of the disease, providing a suitable indication of CNS vulnerability; but these biomarkers fail to predict the occurrence of delayed minor neurological symptoms.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , SARS-CoV-2 , Neurons/metabolism , Neurofilament Proteins , Biomarkers/metabolism , Glial Fibrillary Acidic Protein/metabolism
2.
Front Immunol ; 13: 1001951, 2022.
Article in English | MEDLINE | ID: mdl-36311758

ABSTRACT

Various species of the SARS-CoV-2 host cell receptor, the angiotensin-converting enzyme 2 (ACE2), are present in serum, which may result from virus entry and subsequent proteolytic processing of the membrane receptor. We have recently demonstrated changes of particular ACE2 species in virus infected humans, either cleaved fragments or circulating full-length species. Here, we further explore the potential of serum ACE2 as a biomarker to test SARS-CoV-2 infection and vaccine efficacy in virus susceptible transgenic K18-hACE2 mice expressing human ACE2. First, in serum samples derived from K18-hACE2 mice challenged with a lethal dose of SARS-CoV-2, we observed an increase in the levels of cleaved ACE2 fragment at day 2 post-challenge, which may represent the subsequent proteolytic processing through virus entry. These elevated levels were maintained until the death of the animals at day 6 post-challenge. The circulating full-length ACE2 form displayed a sizable peak at day 4, which declined at day 6 post-challenge. Noticeably, immunization with two doses of the MVA-CoV2-S vaccine candidate prevented ACE2 cleaved changes in serum of animals challenged with a lethal dose of SARS-CoV-2. The efficacy of the MVA-CoV2-S was extended to vaccinated mice after virus re-challenge. These findings highlight that ACE2 could be a potential serum biomarker for disease progression and vaccination against SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Animals , Humans , Mice , Biomarkers , COVID-19/prevention & control , Mice, Transgenic , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Vaccine Efficacy
3.
Int J Mol Sci ; 23(14)2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35886870

ABSTRACT

Reelin binds to the apolipoprotein E receptor apoER2 to activate an intracellular signaling cascade. The proteolytic cleavage of reelin follows receptor binding but can also occur independently of its binding to receptors. This study assesses whether reelin proteolytic fragments are differentially affected in the cerebrospinal fluid (CSF) of Alzheimer's disease (AD) subjects. CSF reelin species were analyzed by Western blotting, employing antibodies against the N- and C-terminal domains. In AD patients, we found a decrease in the 420 kDa full-length reelin compared with controls. In these patients, we also found an increase in the N-terminal 310 kDa fragment resulting from the cleavage at the so-called C-t site, whereas the 180 kDa fragment originated from the N-t site remained unchanged. Regarding the C-terminal proteolytic fragments, the 100 kDa fragment resulting from the cleavage at the C-t site also displayed increased levels, whilst the one resulting from the N-t site, the 250 kDa fragment, decreased. We also detected the presence of an aberrant reelin species with a molecular mass of around 500 kDa present in AD samples (34 of 43 cases), while it was absent in the 14 control cases analyzed. These 500 kDa species were only immunoreactive to N-terminal antibodies. We validated the occurrence of these aberrant reelin species in an Aß42-treated reelin-overexpressing cell model. When we compared the AD samples from APOE genotype subgroups, we only found minor differences in the levels of reelin fragments associated to the APOE genotype, but interestingly, the levels of fragments of apoER2 were lower in APOE ε4 carriers with regards to APOE ε3/ε3. The altered proportion of reelin/apoER2 fragments and the occurrence of reelin aberrant species suggest a complex regulation of the reelin signaling pathway, which results impaired in AD subjects.


Subject(s)
Alzheimer Disease , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Apolipoprotein E3/metabolism , Humans , Peptide Fragments/metabolism , Protein Binding , Reelin Protein , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Serine Proteases/metabolism
4.
Alzheimers Res Ther ; 13(1): 181, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34727970

ABSTRACT

BACKGROUND: Members of the low-density lipoprotein (LDL) receptor family are involved in endocytosis and in transducing signals, but also in amyloid precursor protein (APP) processing and ß-amyloid secretion. ApoER2/LRP8 is a member of this family with key roles in synaptic plasticity in the adult brain. ApoER2 is cleaved after the binding of its ligand, the reelin protein, generating an intracellular domain (ApoER2-ICD) that modulates reelin gene transcription itself. We have analyzed whether ApoER2-ICD is able to regulate the expression of other LDL receptors, and we focused on LRP3, the most unknown member of this family. We analyzed LRP3 expression in middle-aged individuals (MA) and in cases with Alzheimer's disease (AD)-related pathology, and the relation of LRP3 with APP. METHODS: The effects of full-length ApoER2 and ApoER2-ICD overexpression on protein levels, in the presence of recombinant reelin or Aß42 peptide, were evaluated by microarray, qRT-PCRs, and western blots in SH-SY5Y cells. LRP3 expression was analyzed in human frontal cortex extracts from MA subjects (mean age 51.8±4.8 years) and AD-related pathology subjects [Braak neurofibrillary tangle stages I-II, 68.4±8.8 years; III-IV, 80.4 ± 8.8 years; V-VI, 76.5±9.7 years] by qRT-PCRs and western blot; LRP3 interaction with other proteins was assessed by immunoprecipitation. In CHO cells overexpressing LRP3, protein levels of full-length APP and fragments were evaluated by western blots. Chloroquine was employed to block the lysosomal/autophagy function. RESULTS: We have identified that ApoER2 overexpression increases LRP3 expression, also after reelin stimulation of ApoER2 signaling. The same occurred following ApoER2-ICD overexpression. In extracts from subjects with AD-related pathology, the levels of LRP3 mRNA and protein were lower than those in MA subjects. Interestingly, LRP3 transfection in CHO-PS70 cells induced a decrease of full-length APP levels and APP-CTF, particularly in the membrane fraction. In cell supernatants, levels of APP fragments from the amyloidogenic (sAPPα) or non-amyloidogenic (sAPPß) pathways, as well as Aß peptides, were drastically reduced with respect to mock-transfected cells. The inhibitor of lysosomal/autophagy function, chloroquine, significantly increased full-length APP, APP-CTF, and sAPPα levels. CONCLUSIONS: ApoER2/reelin signaling regulates LRP3 expression, whose levels are affected in AD; LRP3 is involved in the regulation of APP levels.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , LDL-Receptor Related Proteins , Alzheimer Disease/genetics , Amyloid beta-Peptides , Amyloid beta-Protein Precursor/genetics , Animals , Apolipoproteins , Humans , LDL-Receptor Related Proteins/genetics , Middle Aged , Reelin Protein
5.
Mech Ageing Dev ; 195: 111462, 2021 04.
Article in English | MEDLINE | ID: mdl-33609535

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia and has a higher incidence in women. The main component of the senile plaques characteristic of AD is amyloid-beta (Aß), with surrounding astrocytes contributing to the degenerative process. We hypothesized that the sex difference in the incidence of AD could be partially due to differential astrocytic responses to Aß. Thus, the effect of Aß1-40 on cell viability, the inflammatory response, and oxidative status was studied in cultures of hippocampal astrocytes from male and female rats. Aß1-40 increased astrocyte viability in both female and male cultures by activating proliferation and survival pathways. Pro-inflammatory and anti-inflammatory responses were induced in astrocytes from both sexes. Aß1-40 did not affect endoplasmic reticulum stress although it induced oxidative stress in male and female astrocytes. Interestingly, male astrocytes had an increase in cell number and significantly lower cell death in response to Aß1-40. Conversely, astrocytes from females displayed a greater inflammatory response after the Aß1-40 challenge. These results suggest that the inflammatory and oxidative environment induced by Aß1-40 in female astrocytes may contribute to enhance the vulnerability to AD and warrants further studies to unveil the mechanisms underlying sex differences in astrocytic responses.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Astrocytes , Neuroimmunomodulation/physiology , Peptide Fragments/metabolism , Animals , Astrocytes/immunology , Astrocytes/metabolism , Cell Proliferation , Cell Survival/immunology , Cells, Cultured , Female , Hippocampus/immunology , Hippocampus/metabolism , Male , Oxidative Stress , Rats , Sex Characteristics , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...