Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
J Mol Diagn ; 26(5): 413-422, 2024 May.
Article in English | MEDLINE | ID: mdl-38490303

ABSTRACT

Blood-based liquid biopsy is increasingly used in clinical care of patients with cancer, and fraction of tumor-derived DNA in circulation (tumor fraction; TFx) has demonstrated clinical validity across multiple cancer types. To determine TFx, shallow whole-genome sequencing of cell-free DNA (cfDNA) can be performed from a single blood sample, using an established computational pipeline (ichorCNA), without prior knowledge of tumor mutations, in a highly cost-effective manner. We describe assay validation of this approach to facilitate broad clinical application, including evaluation of assay sensitivity, precision, repeatability, reproducibility, pre-analytic factors, and DNA quality/quantity. Sensitivity to detect TFx of 3% (lower limit of detection) was 97.2% to 100% at 1× and 0.1× mean sequencing depth, respectively. Precision was demonstrated on distinct sequencing instruments (HiSeqX and NovaSeq) with no observable differences. The assay achieved prespecified 95% agreement of TFx across replicates of the same specimen (repeatability) and duplicate samples in different batches (reproducibility). Comparison of samples collected in EDTA and Streck tubes from single venipuncture in 23 patients demonstrated that EDTA or Streck tubes were comparable if processed within 8 hours. On the basis of a range of DNA inputs (1 to 50 ng), 20 ng cfDNA is the preferred input, with 5 ng minimum acceptable. Overall, this shallow whole-genome sequencing of cfDNA and ichorCNA approach offers sensitive, precise, and reproducible quantitation of TFx, facilitating assay application in clinical cancer care.


Subject(s)
Cell-Free Nucleic Acids , Neoplasms , Humans , Cell-Free Nucleic Acids/genetics , Reproducibility of Results , Edetic Acid , Neoplasms/diagnosis , Neoplasms/genetics , DNA , Biomarkers, Tumor/genetics
2.
Nat Med ; 30(2): 480-487, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38374346

ABSTRACT

Polygenic risk scores (PRSs) have improved in predictive performance, but several challenges remain to be addressed before PRSs can be implemented in the clinic, including reduced predictive performance of PRSs in diverse populations, and the interpretation and communication of genetic results to both providers and patients. To address these challenges, the National Human Genome Research Institute-funded Electronic Medical Records and Genomics (eMERGE) Network has developed a framework and pipeline for return of a PRS-based genome-informed risk assessment to 25,000 diverse adults and children as part of a clinical study. From an initial list of 23 conditions, ten were selected for implementation based on PRS performance, medical actionability and potential clinical utility, including cardiometabolic diseases and cancer. Standardized metrics were considered in the selection process, with additional consideration given to strength of evidence in African and Hispanic populations. We then developed a pipeline for clinical PRS implementation (score transfer to a clinical laboratory, validation and verification of score performance), and used genetic ancestry to calibrate PRS mean and variance, utilizing genetically diverse data from 13,475 participants of the All of Us Research Program cohort to train and test model parameters. Finally, we created a framework for regulatory compliance and developed a PRS clinical report for return to providers and for inclusion in an additional genome-informed risk assessment. The initial experience from eMERGE can inform the approach needed to implement PRS-based testing in diverse clinical settings.


Subject(s)
Chronic Disease , Genetic Risk Score , Population Health , Adult , Child , Humans , Communication , Genetic Predisposition to Disease , Genome-Wide Association Study , Risk Factors , United States
3.
medRxiv ; 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37333246

ABSTRACT

Polygenic risk scores (PRS) have improved in predictive performance supporting their use in clinical practice. Reduced predictive performance of PRS in diverse populations can exacerbate existing health disparities. The NHGRI-funded eMERGE Network is returning a PRS-based genome-informed risk assessment to 25,000 diverse adults and children. We assessed PRS performance, medical actionability, and potential clinical utility for 23 conditions. Standardized metrics were considered in the selection process with additional consideration given to strength of evidence in African and Hispanic populations. Ten conditions were selected with a range of high-risk thresholds: atrial fibrillation, breast cancer, chronic kidney disease, coronary heart disease, hypercholesterolemia, prostate cancer, asthma, type 1 diabetes, obesity, and type 2 diabetes. We developed a pipeline for clinical PRS implementation, used genetic ancestry to calibrate PRS mean and variance, created a framework for regulatory compliance, and developed a PRS clinical report. eMERGE's experience informs the infrastructure needed to implement PRS-based implementation in diverse clinical settings.

4.
Genet Med ; 25(4): 100006, 2023 04.
Article in English | MEDLINE | ID: mdl-36621880

ABSTRACT

PURPOSE: Assessing the risk of common, complex diseases requires consideration of clinical risk factors as well as monogenic and polygenic risks, which in turn may be reflected in family history. Returning risks to individuals and providers may influence preventive care or use of prophylactic therapies for those individuals at high genetic risk. METHODS: To enable integrated genetic risk assessment, the eMERGE (electronic MEdical Records and GEnomics) network is enrolling 25,000 diverse individuals in a prospective cohort study across 10 sites. The network developed methods to return cross-ancestry polygenic risk scores, monogenic risks, family history, and clinical risk assessments via a genome-informed risk assessment (GIRA) report and will assess uptake of care recommendations after return of results. RESULTS: GIRAs include summary care recommendations for 11 conditions, education pages, and clinical laboratory reports. The return of high-risk GIRA to individuals and providers includes guidelines for care and lifestyle recommendations. Assembling the GIRA required infrastructure and workflows for ingesting and presenting content from multiple sources. Recruitment began in February 2022. CONCLUSION: Return of a novel report for communicating monogenic, polygenic, and family history-based risk factors will inform the benefits of integrated genetic risk assessment for routine health care.


Subject(s)
Genome , Genomics , Humans , Prospective Studies , Genomics/methods , Risk Factors , Risk Assessment
5.
Clin Cancer Res ; 28(23): 5066-5078, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36215125

ABSTRACT

PURPOSE: Sensitivity to endocrine therapy (ET) is critical for the clinical benefit from the combination of palbociclib plus ET in hormone receptor-positive/HER2-negative (HR+/HER2-) advanced breast cancer. Bazedoxifene is a third-generation selective estrogen receptor (ER) modulator and selective ER degrader with activity in preclinical models of endocrine-resistant breast cancer, including models harboring ESR1 mutations. Clinical trials in healthy women showed that bazedoxifene is well tolerated. PATIENTS AND METHODS: We conducted a phase Ib/II study of bazedoxifene plus palbociclib in patients with HR+/HER2- advanced breast cancer who progressed on prior ET (N = 36; NCT02448771). RESULTS: The study met its primary endpoint, with a clinical benefit rate of 33.3%, and the safety profile was consistent with what has previously been seen with palbociclib monotherapy. The median progression-free survival (PFS) was 3.6 months [95% confidence interval (CI), 2.0-7.2]. An activating PIK3CA mutation at baseline was associated with a shorter PFS (HR = 4.4; 95% CI, 1.5-13; P = 0.0026), but activating ESR1 mutations did not impact the PFS. Longitudinal plasma circulating tumor DNA whole-exome sequencing (WES; N = 68 plasma samples) provided an overview of the tumor heterogeneity and the subclonal genetic evolution, and identified actionable mutations acquired during treatment. CONCLUSIONS: The combination of palbociclib and bazedoxifene has clinical efficacy and an acceptable safety profile in a heavily pretreated patient population with advanced HR+/HER2- breast cancer. These results merit continued investigation of bazedoxifene in breast cancer.


Subject(s)
Breast Neoplasms , Female , Humans , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Exome Sequencing , Liquid Biopsy , Receptor, ErbB-2/analysis , Receptors, Estrogen/genetics , Treatment Outcome
6.
Nat Med ; 28(8): 1581-1589, 2022 08.
Article in English | MEDLINE | ID: mdl-35739269

ABSTRACT

To evaluate the clinical impact of molecular tumor profiling (MTP) with targeted sequencing panel tests, pediatric patients with extracranial solid tumors were enrolled in a prospective observational cohort study at 12 institutions. In the 345-patient analytical population, median age at diagnosis was 12 years (range 0-27.5); 298 patients (86%) had 1 or more alterations with potential for impact on care. Genomic alterations with diagnostic, prognostic or therapeutic significance were present in 61, 16 and 65% of patients, respectively. After return of the results, impact on care included 17 patients with a clarified diagnostic classification and 240 patients with an MTP result that could be used to select molecularly targeted therapy matched to identified alterations (MTT). Of the 29 patients who received MTT, 24% had an objective response or experienced durable clinical benefit; all but 1 of these patients received targeted therapy matched to a gene fusion. Of the diagnostic variants identified in 209 patients, 77% were gene fusions. MTP with targeted panel tests that includes fusion detection has a substantial clinical impact for young patients with solid tumors.


Subject(s)
High-Throughput Nucleotide Sequencing , Neoplasms , Adolescent , Adult , Biomarkers, Tumor/genetics , Child , Child, Preschool , Genomics , High-Throughput Nucleotide Sequencing/methods , Humans , Infant , Infant, Newborn , Molecular Targeted Therapy/methods , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Prospective Studies , Young Adult
7.
JAMA Oncol ; 8(6): 835-844, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35446370

ABSTRACT

Importance: Knowledge about the spectrum of diseases associated with hereditary cancer syndromes may improve disease diagnosis and management for patients and help to identify high-risk individuals. Objective: To identify phenotypes associated with hereditary cancer genes through a phenome-wide association study. Design, Setting, and Participants: This phenome-wide association study used health data from participants in 3 cohorts. The Electronic Medical Records and Genomics Sequencing (eMERGEseq) data set recruited predominantly healthy individuals from 10 US medical centers from July 16, 2016, through February 18, 2018, with a mean follow-up through electronic health records (EHRs) of 12.7 (7.4) years. The UK Biobank (UKB) cohort recruited participants from March 15, 2006, through August 1, 2010, with a mean (SD) follow-up of 12.4 (1.0) years. The Hereditary Cancer Registry (HCR) recruited patients undergoing clinical genetic testing at Vanderbilt University Medical Center from May 1, 2012, through December 31, 2019, with a mean (SD) follow-up through EHRs of 8.8 (6.5) years. Exposures: Germline variants in 23 hereditary cancer genes. Pathogenic and likely pathogenic variants for each gene were aggregated for association analyses. Main Outcomes and Measures: Phenotypes in the eMERGEseq and HCR cohorts were derived from the linked EHRs. Phenotypes in UKB were from multiple sources of health-related data. Results: A total of 214 020 participants were identified, including 23 544 in eMERGEseq cohort (mean [SD] age, 47.8 [23.7] years; 12 611 women [53.6%]), 187 234 in the UKB cohort (mean [SD] age, 56.7 [8.1] years; 104 055 [55.6%] women), and 3242 in the HCR cohort (mean [SD] age, 52.5 [15.5] years; 2851 [87.9%] women). All 38 established gene-cancer associations were replicated, and 19 new associations were identified. These included the following 7 associations with neoplasms: CHEK2 with leukemia (odds ratio [OR], 3.81 [95% CI, 2.64-5.48]) and plasma cell neoplasms (OR, 3.12 [95% CI, 1.84-5.28]), ATM with gastric cancer (OR, 4.27 [95% CI, 2.35-7.44]) and pancreatic cancer (OR, 4.44 [95% CI, 2.66-7.40]), MUTYH (biallelic) with kidney cancer (OR, 32.28 [95% CI, 6.40-162.73]), MSH6 with bladder cancer (OR, 5.63 [95% CI, 2.75-11.49]), and APC with benign liver/intrahepatic bile duct tumors (OR, 52.01 [95% CI, 14.29-189.29]). The remaining 12 associations with nonneoplastic diseases included BRCA1/2 with ovarian cysts (OR, 3.15 [95% CI, 2.22-4.46] and 3.12 [95% CI, 2.36-4.12], respectively), MEN1 with acute pancreatitis (OR, 33.45 [95% CI, 9.25-121.02]), APC with gastritis and duodenitis (OR, 4.66 [95% CI, 2.61-8.33]), and PTEN with chronic gastritis (OR, 15.68 [95% CI, 6.01-40.92]). Conclusions and Relevance: The findings of this genetic association study analyzing the EHRs of 3 large cohorts suggest that these new phenotypes associated with hereditary cancer genes may facilitate early detection and better management of cancers. This study highlights the potential benefits of using EHR data in genomic medicine.


Subject(s)
Gastritis , Neoplastic Syndromes, Hereditary , Pancreatitis , Acute Disease , Female , Genetic Predisposition to Disease , Germ-Line Mutation , Humans , Male
8.
Genome Med ; 14(1): 34, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35346344

ABSTRACT

BACKGROUND: The All of Us Research Program (AoURP, "the program") is an initiative, sponsored by the National Institutes of Health (NIH), that aims to enroll one million people (or more) across the USA. Through repeated engagement of participants, a research resource is being created to enable a variety of future observational and interventional studies. The program has also committed to genomic data generation and returning important health-related information to participants. METHODS: Whole-genome sequencing (WGS), variant calling processes, data interpretation, and return-of-results procedures had to be created and receive an Investigational Device Exemption (IDE) from the United States Food and Drug Administration (FDA). The performance of the entire workflow was assessed through the largest known cross-center, WGS-based, validation activity that was refined iteratively through interactions with the FDA over many months. RESULTS: The accuracy and precision of the WGS process as a device for the return of certain health-related genomic results was determined to be sufficient, and an IDE was granted. CONCLUSIONS: We present here both the process of navigating the IDE application process with the FDA and the results of the validation study as a guide to future projects which may need to follow a similar path. Changes to the program in the future will be covered in supplementary submissions to the IDE and will support additional variant classes, sample types, and any expansion to the reportable regions.


Subject(s)
Pharmacogenetics , Population Health , Genomics , Humans , United States , Whole Genome Sequencing/methods
9.
J Clin Oncol ; 40(2): 189-201, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34793200

ABSTRACT

PURPOSE: Clonal hematopoiesis (CH) can be transmitted from a donor to a recipient during allogeneic hematopoietic cell transplantation. Exclusion of candidate donors with CH is controversial since its impact on recipient outcomes and graft alloimmune function is uncertain. PATIENTS AND METHODS: We performed targeted error-corrected sequencing on samples from 1,727 donors age 40 years or older and assessed the effect of donor CH on recipient clinical outcomes. We measured long-term engraftment of 102 donor clones and cytokine levels in 256 recipients at 3 and 12 months after transplant. RESULTS: CH was present in 22.5% of donors, with DNMT3A (14.6%) and TET2 (5.2%) mutations being most common; 85% of donor clones showed long-term engraftment in recipients after transplantation, including clones with a variant allele fraction < 0.01. DNMT3A-CH with a variant allele fraction ≥ 0.01, but not smaller clones, was associated with improved recipient overall (hazard ratio [HR], 0.79; P = .042) and progression-free survival (HR, 0.72; P = .003) after adjustment for significant clinical variables. In patients who received calcineurin-based graft-versus-host disease prophylaxis, donor DNMT3A-CH was associated with reduced relapse (subdistribution HR, 0.59; P = .014), increased chronic graft-versus-host disease (subdistribution HR, 1.36; P = .042), and higher interleukin-12p70 levels in recipients. No recipient of sole DNMT3A or TET2-CH developed donor cell leukemia (DCL). In seven of eight cases, DCL evolved from donor CH with rare TP53 or splicing factor mutations or from donors carrying germline DDX41 mutations. CONCLUSION: Donor CH is closely associated with clinical outcomes in transplant recipients, with differential impact on graft alloimmune function and potential for leukemic transformation related to mutated gene and somatic clonal abundance. Donor DNMT3A-CH is associated with improved recipient survival because of reduced relapse risk and with an augmented network of inflammatory cytokines in recipients. Risk of DCL in allogeneic hematopoietic cell transplantation is driven by somatic myelodysplastic syndrome-associated mutations or germline predisposition in donors.


Subject(s)
Clonal Hematopoiesis/genetics , DNA Methyltransferase 3A/genetics , DNA-Binding Proteins/genetics , Dioxygenases/genetics , Hematologic Neoplasms/therapy , Hematopoietic Stem Cell Transplantation , Adolescent , Adult , Aged , Alleles , Calcineurin Inhibitors/therapeutic use , Child , Child, Preschool , Chronic Disease , Cytokines/blood , Female , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Infant , Leukemia/etiology , Male , Middle Aged , Mutation , Progression-Free Survival , Recurrence , Survival Rate , Time Factors , Transplantation, Homologous , Unrelated Donors , Young Adult
10.
Open Forum Infect Dis ; 8(7): ofab243, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34250188

ABSTRACT

BACKGROUND: To facilitate deployment of point-of-care testing for severe acute respiratory syndrome coronavirus 2, we evaluated the Access Bio CareStart COVID-19 Antigen test in a high-throughput, drive-through, free community testing site using anterior nasal (AN) swab reverse-transcription polymerase chain reaction (RT-PCR) for clinical testing. METHODS: Consenting symptomatic and asymptomatic children (≤18 years) and adults received dual AN swabs. CareStart testing was performed with temperature/humidity monitoring. All tests had 2 independent reads to assess interoperator agreement. Patients with positive CareStart results were called and instructed to isolate pending RT-PCR results. The paired RT-PCR result was the reference for sensitivity and specificity calculations. RESULTS: Of 1603 participants, 1245 adults and 253 children had paired RT-PCR/CareStart results and complete symptom data. Eighty-three percent of adults and 87% of children were asymptomatic. CareStart sensitivity/specificity were 84.8% (95% confidence interval [CI], 71.1-93.7)/97.2% (95% CI, 92.0-99.4) and 85.7% (95% CI, 42.1-99.6)/89.5% (95% CI, 66.9-98.7) in adults and children, respectively, within 5 days of symptoms. Sensitivity/specificity were 50.0% (95% CI, 41.0-59.0)/99.1% (95% CI, 98.3-99.6) in asymptomatic adults and 51.4% (95% CI, 34.4-68.1)/97.8% (95% CI, 94.5-99.4) in asymptomatic children. Sensitivity in all 234 RT-PCR-positive people was 96.3% with cycle threshold (Ct) ≤25, 79.6% with Ct ≤30, and 61.4% with Ct ≤35. All 21 false-positive CareStart tests had faint but normal bands. Interoperator agreement was 99.5%. Operational challenges included identification of faint test bands and inconsistent swab elution volumes. CONCLUSIONS: CareStart had high sensitivity in people with Ct ≤25 and moderate sensitivity in symptomatic people overall. Specificity was unexpectedly lower in symptomatic versus asymptomatic people. Excellent interoperator agreement was observed, but operational challenges indicate that operator training is warranted.

11.
J Infect Dis ; 224(10): 1658-1663, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34255846

ABSTRACT

Transmission of coronavirus disease 2019 (COVID-19) from people without symptoms confounds societal mitigation strategies. From April to June 2020, we tested nasopharyngeal swabs by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) from 15 514 staff and 16 966 residents of nursing homes and assisted living facilities in Massachusetts. Cycle threshold (Ct) distributions were very similar between populations with (n = 739) and without (n = 2179) symptoms at the time of sampling (mean Ct, 25.7 vs 26.4; ranges 12-38). However, as local cases waned, those without symptoms shifted towards higher Ct. With such similar viral load distributions, existing testing modalities should perform comparably regardless of symptoms, contingent upon time since infection.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Cross-Sectional Studies , Humans , Reverse Transcriptase Polymerase Chain Reaction , Viral Load
12.
J Clin Microbiol ; 59(9): e0112321, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34191585

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) testing is one component of a multilayered mitigation strategy to enable safe in-person school attendance for the K-12 school population. However, costs, logistics, and uncertainty about effectiveness are potential barriers to implementation. We assessed early data from the Massachusetts K-12 public school pooled SARS-CoV2 testing program, which incorporates two novel design elements: in-school "pod pooling" for assembling pools of dry anterior nasal swabs from 5 to 10 individuals and positive pool deconvolution using the BinaxNOW antigen rapid diagnostic test (Ag RDT), to assess the operational and analytical feasibility of this approach. Over 3 months, 187,597 individual swabs were tested across 39,297 pools from 738 schools. The pool positivity rate was 0.8%; 98.2% of pools tested negative and 0.2% inconclusive, and 0.8% of pools submitted could not be tested. Of 310 positive pools, 70.6% had an N1 or N2 probe cycle threshold (CT) value of ≤30. In reflex testing (performed on specimens newly collected from members of the positive pool), 92.5% of fully deconvoluted pools with an N1 or N2 target CT of ≤30 identified a positive individual using the BinaxNOW test performed 1 to 3 days later. However, of 124 positive pools with full reflex testing data available for analysis, 32 (25.8%) of BinaxNOW pool deconvolution testing attempts did not identify a positive individual, requiring additional reflex testing. With sufficient staffing support and low pool positivity rates, pooled sample collection and reflex testing were feasible for schools. These early program findings confirm that screening for K-12 students and staff is achievable at scale with a scheme that incorporates in-school pooling, primary testing by reverse transcription-PCR (RT-PCR), and Ag RDT reflex/deconvolution testing.


Subject(s)
COVID-19 , RNA, Viral , Humans , Molecular Diagnostic Techniques , SARS-CoV-2 , Schools , Specimen Handling
13.
Science ; 373(6552)2021 07 16.
Article in English | MEDLINE | ID: mdl-34083451

ABSTRACT

Estimating an epidemic's trajectory is crucial for developing public health responses to infectious diseases, but case data used for such estimation are confounded by variable testing practices. We show that the population distribution of viral loads observed under random or symptom-based surveillance-in the form of cycle threshold (Ct) values obtained from reverse transcription quantitative polymerase chain reaction testing-changes during an epidemic. Thus, Ct values from even limited numbers of random samples can provide improved estimates of an epidemic's trajectory. Combining data from multiple such samples improves the precision and robustness of this estimation. We apply our methods to Ct values from surveillance conducted during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in a variety of settings and offer alternative approaches for real-time estimates of epidemic trajectories for outbreak management and response.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/physiology , Viral Load , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing , Cross-Sectional Studies , Epidemiological Monitoring , Humans , Incidence , Models, Theoretical , Pandemics
14.
Genome Med ; 13(1): 89, 2021 05 20.
Article in English | MEDLINE | ID: mdl-34016182

ABSTRACT

BACKGROUND: Circulating tumor DNA (ctDNA) offers minimally invasive means to repeatedly interrogate tumor genomes, providing opportunities to monitor clonal dynamics induced by metastasis and therapeutic selective pressures. In metastatic cancers, ctDNA profiling allows for simultaneous analysis of both local and distant sites of recurrence. Despite the promise of ctDNA sampling, its utility in real-time genetic monitoring remains largely unexplored. METHODS: In this exploratory analysis, we characterize high-frequency ctDNA sample series collected over narrow time frames from seven patients with metastatic triple-negative breast cancer, each undergoing treatment with Cabozantinib, a multi-tyrosine kinase inhibitor (NCT01738438, https://clinicaltrials.gov/ct2/show/NCT01738438 ). Applying orthogonal whole exome sequencing, ultra-low pass whole genome sequencing, and 396-gene targeted panel sequencing, we analyzed 42 plasma-derived ctDNA libraries, representing 4-8 samples per patient with 6-42 days between samples. Integrating tumor fraction, copy number, and somatic variant information, we model tumor clonal dynamics, predict neoantigens, and evaluate consistency of genomic information from orthogonal assays. RESULTS: We measured considerable variation in ctDNA tumor faction in each patient, often conflicting with RECIST imaging response metrics. In orthogonal sequencing, we found high concordance between targeted panel and whole exome sequencing in both variant detection and variant allele frequency estimation (specificity = 95.5%, VAF correlation, r = 0.949), Copy number remained generally stable, despite resolution limitations posed by low tumor fraction. Through modeling, we inferred and tracked distinct clonal populations specific to each patient and built phylogenetic trees revealing alterations in hallmark breast cancer drivers, including TP53, PIK3CA, CDK4, and PTEN. Our modeling revealed varied responses to therapy, with some individuals displaying stable clonal profiles, while others showed signs of substantial expansion or reduction in prevalence, with characteristic alterations of varied literature annotation in relation to the study drug. Finally, we predicted and tracked neoantigen-producing alterations across time, exposing translationally relevant detection patterns. CONCLUSIONS: Despite technical challenges arising from low tumor content, metastatic ctDNA monitoring can aid our understanding of response and progression, while minimizing patient risk and discomfort. In this study, we demonstrate the potential for high-frequency monitoring of evolving genomic features, providing an important step toward scalable, translational genomics for clinical decision making.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Circulating Tumor DNA , Clonal Evolution/genetics , Adult , Aged , Computational Biology/methods , DNA Copy Number Variations , Female , High-Throughput Nucleotide Sequencing , Humans , Liquid Biopsy/methods , Middle Aged , Mutation , Neoplasm Staging , Exome Sequencing
15.
J Clin Microbiol ; 59(5)2021 04 20.
Article in English | MEDLINE | ID: mdl-33622768

ABSTRACT

Rapid diagnostic tests (RDTs) for SARS-CoV-2 antigens (Ag) that can be performed at point of care (POC) can supplement molecular testing and help mitigate the COVID-19 pandemic. Deployment of an Ag RDT requires an understanding of its operational and performance characteristics under real-world conditions and in relevant subpopulations. We evaluated the Abbott BinaxNOW COVID-19 Ag card in a high-throughput, drive-through, free community testing site in Massachusetts using anterior nasal (AN) swab reverse transcriptase PCR (RT-PCR) for clinical testing. Individuals presenting for molecular testing in two of seven lanes were offered the opportunity to also receive BinaxNOW testing. Dual AN swabs were collected from symptomatic and asymptomatic children (≤18 years of age) and adults. BinaxNOW testing was performed in a testing pod with temperature/humidity monitoring. One individual performed testing and official result reporting for each test, but most tests had a second independent reading to assess interoperator agreement. Positive BinaxNOW results were scored as faint, medium, or strong. Positive BinaxNOW results were reported to patients by phone, and they were instructed to isolate pending RT-PCR results. The paired RT-PCR result was the reference for sensitivity and specificity calculations. Of 2,482 participants, 1,380 adults and 928 children had paired RT-PCR/BinaxNOW results and complete symptom data. In this study, 974/1,380 (71%) adults and 829/928 (89%) children were asymptomatic. BinaxNOW had 96.5% (95% confidence interval [CI], 90.0 to 99.3) sensitivity and 100% (95% CI, 98.6 to 100.0) specificity in adults within 7 days of symptoms and 84.6% (95% CI, 65.1 to 95.6) sensitivity and 100% (95% CI, 94.5 to 100.0) specificity in children within 7 days of symptoms. Sensitivity and specificity in asymptomatic adults were 70.2% (95% CI, 56.6 to 81.6) and 99.6% (95% CI, 98.9 to 99.9), respectively, and in asymptomatic children, they were 65.4% (95% CI, 55.6 to 74.4) and 99.0% (95% CI, 98.0 to 99.6), respectively. By cycle threshold (CT ) value cutoff, sensitivity in all subgroups combined (n = 292 RT-PCR-positive individuals) was 99.3% with CT values of ≤25, 95.8% with CT values of ≤30, and 81.2% with CT values of ≤35. Twelve false-positive BinaxNOW results (out of 2,308 tests) were observed; in all 12, the test bands were faint but otherwise normal and were noted by both readers. One invalid BinaxNOW result was identified. Interoperator agreement (positive versus negative BinaxNOW result) was 100% (n = 2,230/2,230 double reads). Each operator was able to process 20 RDTs per hour. In a separate set of 30 specimens (from individuals with symptoms ≤7 days) run at temperatures below the manufacturer's recommended range (46 to 58.5°F), sensitivity was 66.7% and specificity 95.2%. BinaxNOW had very high specificity in both adults and children and very high sensitivity in newly symptomatic adults. Overall, 95.8% sensitivity was observed with CT values of ≤30. These data support public health recommendations for use of the BinaxNOW test in adults with symptoms for ≤7 days without RT-PCR confirmation. Excellent interoperator agreement indicates that an individual can perform and read the BinaxNOW test alone. A skilled laboratorian can perform and read 20 tests per hour. Careful attention to temperature is critical.


Subject(s)
Antigens, Viral/isolation & purification , COVID-19 Testing , COVID-19/diagnosis , Mass Screening/methods , Pandemics , Point-of-Care Testing , Adult , Asymptomatic Infections , Child , Community Health Services , Humans , Massachusetts , Sensitivity and Specificity , Temperature
16.
medRxiv ; 2021 Feb 13.
Article in English | MEDLINE | ID: mdl-33594381

ABSTRACT

Estimating an epidemic's trajectory is crucial for developing public health responses to infectious diseases, but incidence data used for such estimation are confounded by variable testing practices. We show instead that the population distribution of viral loads observed under random or symptom-based surveillance, in the form of cycle threshold (Ct) values, changes during an epidemic and that Ct values from even limited numbers of random samples can provide improved estimates of an epidemic's trajectory. Combining multiple such samples and the fraction positive improves the precision and robustness of such estimation. We apply our methods to Ct values from surveillance conducted during the SARS-CoV-2 pandemic in a variety of settings and demonstrate new approaches for real-time estimates of epidemic trajectories for outbreak management and response.

17.
NPJ Genom Med ; 5: 47, 2020.
Article in English | MEDLINE | ID: mdl-33110627

ABSTRACT

Whole-genome sequencing (WGS) has shown promise in becoming a first-tier diagnostic test for patients with rare genetic disorders; however, standards addressing the definition and deployment practice of a best-in-class test are lacking. To address these gaps, the Medical Genome Initiative, a consortium of leading healthcare and research organizations in the US and Canada, was formed to expand access to high-quality clinical WGS by publishing best practices. Here, we present consensus recommendations on clinical WGS analytical validation for the diagnosis of individuals with suspected germline disease with a focus on test development, upfront considerations for test design, test validation practices, and metrics to monitor test performance. This work also provides insight into the current state of WGS testing at each member institution, including the utilization of reference and other standards across sites. Importantly, members of this initiative strongly believe that clinical WGS is an appropriate first-tier test for patients with rare genetic disorders, and at minimum is ready to replace chromosomal microarray analysis and whole-exome sequencing. The recommendations presented here should reduce the burden on laboratories introducing WGS into clinical practice, and support safe and effective WGS testing for diagnosis of germline disease.

18.
Clin Cancer Res ; 26(11): 2556-2564, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32170028

ABSTRACT

PURPOSE: Existing cell-free DNA (cfDNA) methods lack the sensitivity needed for detecting minimal residual disease (MRD) following therapy. We developed a test for tracking hundreds of patient-specific mutations to detect MRD with a 1,000-fold lower error rate than conventional sequencing. EXPERIMENTAL DESIGN: We compared the sensitivity of our approach to digital droplet PCR (ddPCR) in a dilution series, then retrospectively identified two cohorts of patients who had undergone prospective plasma sampling and clinical data collection: 16 patients with ER+/HER2- metastatic breast cancer (MBC) sampled within 6 months following metastatic diagnosis and 142 patients with stage 0 to III breast cancer who received curative-intent treatment with most sampled at surgery and 1 year postoperative. We performed whole-exome sequencing of tumors and designed individualized MRD tests, which we applied to serial cfDNA samples. RESULTS: Our approach was 100-fold more sensitive than ddPCR when tracking 488 mutations, but most patients had fewer identifiable tumor mutations to track in cfDNA (median = 57; range = 2-346). Clinical sensitivity was 81% (n = 13/16) in newly diagnosed MBC, 23% (n = 7/30) at postoperative and 19% (n = 6/32) at 1 year in early-stage disease, and highest in patients with the most tumor mutations available to track. MRD detection at 1 year was strongly associated with distant recurrence [HR = 20.8; 95% confidence interval, 7.3-58.9]. Median lead time from first positive sample to recurrence was 18.9 months (range = 3.4-39.2 months). CONCLUSIONS: Tracking large numbers of individualized tumor mutations in cfDNA can improve MRD detection, but its sensitivity is driven by the number of tumor mutations available to track.


Subject(s)
Breast Neoplasms/pathology , Circulating Tumor DNA/genetics , Estrogen Receptor alpha/metabolism , Neoplasm Recurrence, Local/pathology , Neoplasm, Residual/pathology , Adult , Breast Neoplasms/blood , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Circulating Tumor DNA/blood , Combined Modality Therapy , Female , Follow-Up Studies , Humans , Neoplasm Recurrence, Local/blood , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/therapy , Neoplasm, Residual/blood , Neoplasm, Residual/genetics , Neoplasm, Residual/therapy , Prognosis , Prospective Studies , Retrospective Studies , Survival Rate
19.
Nature ; 565(7738): 234-239, 2019 01.
Article in English | MEDLINE | ID: mdl-30568305

ABSTRACT

Neoantigens, which are derived from tumour-specific protein-coding mutations, are exempt from central tolerance, can generate robust immune responses1,2 and can function as bona fide antigens that facilitate tumour rejection3. Here we demonstrate that a strategy that uses multi-epitope, personalized neoantigen vaccination, which has previously been tested in patients with high-risk melanoma4-6, is feasible for tumours such as glioblastoma, which typically have a relatively low mutation load1,7 and an immunologically 'cold' tumour microenvironment8. We used personalized neoantigen-targeting vaccines to immunize patients newly diagnosed with glioblastoma following surgical resection and conventional radiotherapy in a phase I/Ib study. Patients who did not receive dexamethasone-a highly potent corticosteroid that is frequently prescribed to treat cerebral oedema in patients with glioblastoma-generated circulating polyfunctional neoantigen-specific CD4+ and CD8+ T cell responses that were enriched in a memory phenotype and showed an increase in the number of tumour-infiltrating T cells. Using single-cell T cell receptor analysis, we provide evidence that neoantigen-specific T cells from the peripheral blood can migrate into an intracranial glioblastoma tumour. Neoantigen-targeting vaccines thus have the potential to favourably alter the immune milieu of glioblastoma.


Subject(s)
Antigens, Neoplasm/immunology , Cancer Vaccines/immunology , Glioblastoma/immunology , Glioblastoma/therapy , T-Lymphocytes/immunology , Adult , Aged , DNA Methylation , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Dexamethasone/administration & dosage , Glioblastoma/diagnosis , Glioblastoma/genetics , Humans , Middle Aged , Promoter Regions, Genetic/genetics , Receptors, Antigen, T-Cell/immunology , Tumor Suppressor Proteins/genetics , Young Adult
20.
BMC Genomics ; 19(1): 332, 2018 May 08.
Article in English | MEDLINE | ID: mdl-29739332

ABSTRACT

BACKGROUND: Here we present an in-depth characterization of the mechanism of sequencer-induced sample contamination due to the phenomenon of index swapping that impacts Illumina sequencers employing patterned flow cells with Exclusion Amplification (ExAmp) chemistry (HiSeqX, HiSeq4000, and NovaSeq). We also present a remediation method that minimizes the impact of such swaps. RESULTS: Leveraging data collected over a two-year period, we demonstrate the widespread prevalence of index swapping in patterned flow cell data. We calculate mean swap rates across multiple sample preparation methods and sequencer models, demonstrating that different library methods can have vastly different swapping rates and that even non-ExAmp chemistry instruments display trace levels of index swapping. We provide methods for eliminating sample data cross contamination by utilizing non-redundant dual indexing for complete filtering of index swapped reads, and share the sequences for 96 non-combinatorial dual indexes we have validated across various library preparation methods and sequencer models. Finally, using computational methods we provide a greater insight into the mechanism of index swapping. CONCLUSIONS: Index swapping in pooled libraries is a prevalent phenomenon that we observe at a rate of 0.2 to 6% in all sequencing runs on HiSeqX, HiSeq 4000/3000, and NovaSeq. Utilizing non-redundant dual indexing allows for the removal (flagging/filtering) of these swapped reads and eliminates swapping induced sample contamination, which is critical for sensitive applications such as RNA-seq, single cell, blood biopsy using circulating tumor DNA, or clinical sequencing.


Subject(s)
High-Throughput Nucleotide Sequencing , Sequence Analysis/methods , DNA/chemistry , DNA/isolation & purification , DNA/metabolism , Gene Library , Genome, Human , Humans , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...