Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Cell Physiol ; 294(1): C313-23, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17977940

ABSTRACT

Previous studies have shown that, in acutely dispersed canine pulmonary artery smooth muscle cells (PASMCs), depletion of both functionally independent inositol 1,4,5-trisphosphate (IP(3))- and ryanodine-sensitive Ca(2+) stores activates capacitative Ca(2+) entry (CCE). The present study aimed to determine if cell culture modifies intracellular Ca(2+) stores and alters Ca(2+) entry pathways caused by store depletion and hypoxia in canine PASMCs. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured in fura 2-loaded cells. Mn(2+) quench of fura 2 signal was performed to study divalent cation entry, and the effects of hypoxia were examined under oxygen tension of 15-18 mmHg. In acutely isolated PASMCs, depletion of IP(3)-sensitive Ca(2+) stores with cyclopiazonic acid (CPA) did not affect initial caffeine-induced intracellular Ca(2+) transients but abolished 5-HT-induced Ca(2+) transients. In contrast, CPA significantly reduced caffeine- and 5-HT-induced Ca(2+) transients in cultured PASMCs. In cultured PASMCs, store depletion or hypoxia caused a transient followed by a sustained rise in [Ca(2+)](i). The transient rise in [Ca(2+)](i) was partially inhibited by nifedipine, whereas the nifedipine-insensitive transient rise in [Ca(2+)](i) was inhibited by KB-R7943, a selective inhibitor of reverse mode Na(+)/Ca(2+) exchanger (NCX). The nifedipine-insensitive sustained rise in [Ca(2+)](i) was inhibited by SKF-96365, Ni(2+), La(3+), and Gd(3+). In addition, store depletion or hypoxia increased the rate of Mn(2+) quench of fura 2 fluorescence that was also inhibited by these blockers, exhibiting pharmacological properties characteristic of CCE. We conclude that cell culture of canine PASMCs reorganizes IP(3) and ryanodine receptors into a common intracellular Ca(2+) compartment, and depletion of this store or hypoxia activates voltage-operated Ca(2+) entry, reverse mode NCX, and CCE.


Subject(s)
Calcium Channels/metabolism , Calcium Signaling , Calcium/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Actins/metabolism , Animals , Caffeine/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Channels/drug effects , Calcium-Transporting ATPases/antagonists & inhibitors , Calcium-Transporting ATPases/metabolism , Cell Hypoxia , Cells, Cultured , Dogs , Enzyme Inhibitors/pharmacology , Imidazoles/pharmacology , Indoles/pharmacology , Inositol 1,4,5-Trisphosphate/metabolism , Muscle Contraction , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/enzymology , Nifedipine/pharmacology , Oxygen/metabolism , Pulmonary Artery/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Serotonin/metabolism , Sodium-Calcium Exchanger/antagonists & inhibitors , Sodium-Calcium Exchanger/metabolism , Thiourea/analogs & derivatives , Thiourea/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...