Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 36(45): 13591-13600, 2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33161715

ABSTRACT

The separation of CO2/CH4 gas mixtures is a key challenge for the energy sector and is essential for the efficient upgrading of natural gas and biogas. A new emerging field, that of metal-organic framework nanosheets (MONs), has shown the potential to outperform conventional separation methods and bulk metal-organic frameworks (MOFs). In this work, we model the CO2/CH4 separation in both defect-free and defective 2D CuBDC nanosheets and compare their performance with the bulk CuBDC MOF and experimental data. We report the results of external force nonequilibrium molecular dynamics (EF-NEMD) for pure components and binary mixtures. The EF-NEMD simulations reveal a pore blocking separation mechanism, in which the CO2 molecules occupy adsorption sites and significantly restrict the diffusion of CH4. The MON structure achieves a better selectivity of CO2 over CH4 compared to the bulk CuBDC MOF which is due to the mass transfer resistance of the methane molecules on the surface of the nanosheet. Our results show that it is essential to consider the real mixture in these systems rather than relying solely on pure component data and ideal selectivity. Furthermore, the separation is shown to be sensitive to the presence of missing linker defects in the nanosheets. Only 10% of missing linkers result in nonselective nanosheets. Hence, the importance of a defect-free synthetic method for CuBDC nanosheets is underlined.

2.
Inorg Chem ; 57(9): 5074-5082, 2018 May 07.
Article in English | MEDLINE | ID: mdl-29683657

ABSTRACT

The complex [Zn2(tdc)2dabco] (H2tdc = thiophene-2,5-dicarboxylic acid; dabco = 1,4-diazabicyclooctane) shows a remarkable increase in carbon dioxide (CO2) uptake and CO2/dinitrogen (N2) selectivity compared to the nonthiophene analogue [Zn2(bdc)2dabco] (H2bdc = benzene-1,4-dicarboxylic acid; terephthalic acid). CO2 adsorption at 1 bar for [Zn2(tdc)2dabco] is 67.4 cm3·g-1 (13.2 wt %) at 298 K and 153 cm3·g-1 (30.0 wt %) at 273 K. For [Zn2(bdc)2dabco], the equivalent values are 46 cm3·g-1 (9.0 wt %) and 122 cm3·g-1 (23.9 wt %), respectively. The isosteric heat of adsorption for CO2 in [Zn2(tdc)2dabco] at zero coverage is low (23.65 kJ·mol-1), ensuring facile regeneration of the porous material. Enhancement by the thiophene group on the separation of CO2/N2 gas mixtures has been confirmed by both ideal adsorbate solution theory calculations and dynamic breakthrough experiments. The preferred binding sites of adsorbed CO2 in [Zn2(tdc)2dabco] have been unambiguously determined by in situ single-crystal diffraction studies on CO2-loaded [Zn2(tdc)2dabco], coupled with quantum-chemical calculations. These studies unveil the role of the thiophene moieties in the specific CO2 binding via an induced dipole interaction between CO2 and the sulfur center, confirming that an enhanced CO2 capacity in [Zn2(tdc)2dabco] is achieved without the presence of open metal sites. The experimental data and theoretical insight suggest a viable strategy for improvement of the adsorption properties of already known materials through the incorporation of sulfur-based heterocycles within their porous structures.

3.
Nat Commun ; 9(1): 1429, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29650966

ABSTRACT

Some porous crystalline solids change their structure upon guest inclusion. Unlocking the potential of these solids for a wide variety of applications requires full characterisation of the response to adsorption and the underlying framework-guest interactions. Here, we introduce an approach to understanding gas uptake in porous metal-organic frameworks (MOFs) by loading liquefied gases at GPa pressures inside the Zn-based framework ZIF-8. An integrated experimental and computational study using high-pressure crystallography, grand canonical Monte Carlo (GCMC) and periodic DFT simulations has revealed six symmetry-independent adsorption sites within the framework and a transition to a high-pressure phase. The cryogenic high-pressure loading method offers a different approach to obtaining atomistic detail on guest molecules. The GCMC simulations provide information on interaction energies of the adsorption sites allowing to classify the sites by energy. DFT calculations reveal the energy barrier of the transition to the high-pressure phase. This combination of techniques provides a holistic approach to understanding both structural and energetic changes upon adsorption in MOFs.

4.
Nat Commun ; 8: 15268, 2017 05 09.
Article in English | MEDLINE | ID: mdl-28485392

ABSTRACT

Pioneered by Lehn, Cram, Peterson and Breslow, supramolecular chemistry concepts have evolved providing fundamental knowledge of the relationships between the structures and reactivities of organized molecules. A particular fascinating class of metallo-supramolecular molecules are hollow coordination cages that provide cavities of molecular dimensions promoting applications in diverse areas including catalysis, enzyme mimetics and material science. Here we report the synthesis of coordination cages with exceptional cross-sectional diameters that are composed of multiple sub-cages providing numerous distinctive binding sites through labile coordination solvent molecules. The building principles, involving Archimedean and Platonic bodies, renders these supramolecular keplerates as a class of cages whose composition and topological aspects compare to characteristics of edge-transitive {Cu2} MOFs with A3X4 stoichiometry. The nature of the cavities in these double-shell metal-organic polyhedra and their inner/outer binding sites provide perspectives for post-synthetic functionalizations, separations and catalysis. Transmission electron microscopy studies demonstrate that single molecules are experimentally accessible.

5.
Proc Natl Acad Sci U S A ; 114(12): 3056-3061, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28280097

ABSTRACT

Modulation and precise control of porosity of metal-organic frameworks (MOFs) is of critical importance to their materials function. Here we report modulation of porosity for a series of isoreticular octacarboxylate MOFs, denoted MFM-180 to MFM-185, via a strategy of selective elongation of metal-organic cages. Owing to the high ligand connectivity, these MOFs do not show interpenetration, and are robust structures that have permanent porosity. Interestingly, activated MFM-185a shows a high Brunauer-Emmett-Teller (BET) surface area of 4,734 m2 g-1 for an octacarboxylate MOF. These MOFs show remarkable CH4 and CO2 adsorption properties, notably with simultaneously high gravimetric and volumetric deliverable CH4 capacities of 0.24 g g-1 and 163 vol/vol (298 K, 5-65 bar) recorded for MFM-185a due to selective elongation of tubular cages. The dynamics of molecular rotors in deuterated MFM-180a-d16 and MFM-181a-d16 were investigated by variable-temperature 2H solid-state NMR spectroscopy to reveal the reorientation mechanisms within these materials. Analysis of the flipping modes of the mobile phenyl groups, their rotational rates, and transition temperatures paves the way to controlling and understanding the role of molecular rotors through design of organic linkers within porous MOF materials.

6.
J Am Chem Soc ; 138(45): 14828-14831, 2016 11 16.
Article in English | MEDLINE | ID: mdl-27665845

ABSTRACT

An amide-functionalized metal organic framework (MOF) material, MFM-136, shows a high CO2 uptake of 12.6 mmol g-1 at 20 bar and 298 K. MFM-136 is the first example of an acylamide pyrimidyl isophthalate MOF without open metal sites and, thus, provides a unique platform to study guest binding, particularly the role of free amides. Neutron diffraction reveals that, surprisingly, there is no direct binding between the adsorbed CO2/CH4 molecules and the pendant amide group in the pore. This observation has been confirmed unambiguously by inelastic neutron spectroscopy. This suggests that introduction of functional groups solely may not necessarily induce specific guest-host binding in porous materials, but it is a combination of pore size, geometry, and functional group that leads to enhanced gas adsorption properties.

7.
Chem Commun (Camb) ; 50(32): 4207-10, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24634915

ABSTRACT

The syntheses, calculated surface areas and N2 uptakes of two highly augmented {Cu}2 'paddlewheel'-based MOFs provide a direct comparison of tbo and pto framework polymorphs with identical composition.

8.
Chemistry ; 20(13): 3595-9, 2014 Mar 24.
Article in English | MEDLINE | ID: mdl-24616154

ABSTRACT

A solid-state approach that takes advantage of the ordered 3D arrangement of active secondary building units allows the preparation of new interlocked MOFs that grow hetero-epitaxially on the crystal faces of a precursor phase that acts as a "topological blueprint". The synthetic strategy is exemplified by using rigid acetylene-based ligands to produce highly augmented Cu(II) acetate-based MOFs.

9.
J Am Chem Soc ; 133(46): 18526-9, 2011 Nov 23.
Article in English | MEDLINE | ID: mdl-22022950

ABSTRACT

Para-disubstituted alkylaromatics such as p-xylene are preferentially adsorbed from an isomer mixture on three isostructural metal-organic frameworks: MIL-125(Ti) ([Ti(8)O(8)(OH)(4)(BDC)(6)]), MIL-125(Ti)-NH(2) ([Ti(8)O(8)(OH)(4)(BDC-NH(2))(6)]), and CAU-1(Al)-NH(2) ([Al(8)(OH)(4)(OCH(3))(8)(BDC-NH(2))(6)]) (BDC = 1,4-benzenedicarboxylate). Their unique structure contains octahedral cages, which can separate molecules on the basis of differences in packing and interaction with the pore walls, as well as smaller tetrahedral cages, which are capable of separating molecules by molecular sieving. These experimental data are in line with predictions by molecular simulations. Additional adsorption and microcalorimetric experiments provide insight in the complementary role of the two cage types in providing the para selectivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...