Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(6): 5401-5414, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35187355

ABSTRACT

The continuing emergence of antibacterial resistance reduces the effectiveness of antibiotics and drives an ongoing search for effective replacements. Screening compound libraries for antibacterial activity in standard growth media has been extensively explored and may be showing diminishing returns. Inhibition of bacterial targets that are selectively important under in vivo (infection) conditions and, therefore, would be missed by conventional in vitro screens might be an alternative. Surrogate host models of infection, however, are often not suitable for high-throughput screens. Here, we adapted a medium-throughput Tetrahymena pyriformis surrogate host model that was successfully used to identify inhibitors of a hyperviscous Klebsiella pneumoniae strain to a high-throughput format and screened circa 1.2 million compounds. The screen was robust and identified confirmed hits from different chemical classes with potent inhibition of K. pneumoniae growth in the presence of T. pyriformis that lacked any appreciable direct antibacterial activity. Several of these appeared to inhibit capsule/mucoidy, which are key virulence factors in hypervirulent K. pneumoniae. A weakly antibacterial inhibitor of LpxC (essential for the synthesis of the lipid A moiety of lipopolysaccharides) also appeared to be more active in the presence of T. pyriformis, which is consistent with the role of LPS in virulence as well as viability in K. pneumoniae.

2.
Bioorg Med Chem ; 26(18): 5169-5180, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30253886

ABSTRACT

Free fatty acid-2 (FFA2) receptor is a G-protein coupled receptor of interest in the development of therapeutics in metabolic and inflammatory disease areas. The discovery and optimization of an N-thiazolylamide carboxylic acid FFA2 agonist scaffold is described. Dual key objectives were to i) evaluate the potential of this scaffold for lead optimization in particular with respect to safety de-risking physicochemical properties, i.e. lipophilicity and aromatic content, and ii) to demonstrate the utility of selected lead analogues from this scaffold in a pertinent in vivo model such as oral glucose tolerance test (OGTT). As such, a concomitant improvement in bioactivity together with lipophilic ligand efficiency (LLE) and fraction sp3 content (Fsp3) parameters guided these efforts. Compound 10 was advanced into studies in mice on the basis of its optimized profile vs initial lead 1 (ΔLLE = 0.3, ΔFsp3 = 0.24). Although active in OGTT, 10 also displayed similar activity in the FFA2-knockout mice. Given this off-target OGTT effect, we discontinued development of this FFA2 agonist scaffold.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Disease Models, Animal , Drug Discovery , Receptors, Cell Surface/agonists , Thiazoles/pharmacology , Animals , Dose-Response Relationship, Drug , Humans , Mice , Mice, Knockout , Molecular Structure , Rats , Receptors, Cell Surface/deficiency , Receptors, Cell Surface/metabolism , Structure-Activity Relationship , Thiazoles/chemistry
3.
J Med Chem ; 60(12): 5002-5014, 2017 06 22.
Article in English | MEDLINE | ID: mdl-28549219

ABSTRACT

Over the past several decades, the frequency of antibacterial resistance in hospitals, including multidrug resistance (MDR) and its association with serious infectious diseases, has increased at alarming rates. Pseudomonas aeruginosa is a leading cause of nosocomial infections, and resistance to virtually all approved antibacterial agents is emerging in this pathogen. To address the need for new agents to treat MDR P. aeruginosa, we focused on inhibiting the first committed step in the biosynthesis of lipid A, the deacetylation of uridyldiphospho-3-O-(R-hydroxydecanoyl)-N-acetylglucosamine by the enzyme LpxC. We approached this through the design, synthesis, and biological evaluation of novel hydroxamic acid LpxC inhibitors, exemplified by 1, where cytotoxicity against mammalian cell lines was reduced, solubility and plasma-protein binding were improved while retaining potent anti-pseudomonal activity in vitro and in vivo.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Amidohydrolases/chemistry , Animals , Anti-Bacterial Agents/chemical synthesis , Chemistry Techniques, Synthetic , Crystallography, X-Ray , Drug Design , Drug Evaluation, Preclinical/methods , Drug Resistance, Multiple, Bacterial/drug effects , Enzyme Inhibitors/chemical synthesis , Female , Hep G2 Cells/drug effects , Humans , K562 Cells/drug effects , Mice, Inbred BALB C , Microbial Sensitivity Tests , Molecular Docking Simulation , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Structure-Activity Relationship
4.
Nature ; 535(7610): 148-52, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27362227

ABSTRACT

The non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, has an important role in signal transduction downstream of growth factor receptor signalling and was the first reported oncogenic tyrosine phosphatase. Activating mutations of SHP2 have been associated with developmental pathologies such as Noonan syndrome and are found in multiple cancer types, including leukaemia, lung and breast cancer and neuroblastoma. SHP2 is ubiquitously expressed and regulates cell survival and proliferation primarily through activation of the RAS­ERK signalling pathway. It is also a key mediator of the programmed cell death 1 (PD-1) and B- and T-lymphocyte attenuator (BTLA) immune checkpoint pathways. Reduction of SHP2 activity suppresses tumour cell growth and is a potential target of cancer therapy. Here we report the discovery of a highly potent (IC50 = 0.071 µM), selective and orally bioavailable small-molecule SHP2 inhibitor, SHP099, that stabilizes SHP2 in an auto-inhibited conformation. SHP099 concurrently binds to the interface of the N-terminal SH2, C-terminal SH2, and protein tyrosine phosphatase domains, thus inhibiting SHP2 activity through an allosteric mechanism. SHP099 suppresses RAS­ERK signalling to inhibit the proliferation of receptor-tyrosine-kinase-driven human cancer cells in vitro and is efficacious in mouse tumour xenograft models. Together, these data demonstrate that pharmacological inhibition of SHP2 is a valid therapeutic approach for the treatment of cancers.


Subject(s)
Neoplasms/drug therapy , Neoplasms/enzymology , Piperidines/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Pyrimidines/pharmacology , Receptor Protein-Tyrosine Kinases/metabolism , Allosteric Regulation/drug effects , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Humans , Inhibitory Concentration 50 , MAP Kinase Signaling System/drug effects , Mice , Mice, Nude , Models, Molecular , Neoplasms/pathology , Oncogene Protein p21(ras)/metabolism , Piperidines/chemistry , Piperidines/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Stability/drug effects , Protein Structure, Tertiary/drug effects , Protein Tyrosine Phosphatase, Non-Receptor Type 11/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Pyrimidines/chemistry , Pyrimidines/therapeutic use , Reproducibility of Results , Xenograft Model Antitumor Assays
5.
J Med Chem ; 59(17): 7773-82, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27347692

ABSTRACT

SHP2 is a nonreceptor protein tyrosine phosphatase (PTP) encoded by the PTPN11 gene involved in cell growth and differentiation via the MAPK signaling pathway. SHP2 also purportedly plays an important role in the programmed cell death pathway (PD-1/PD-L1). Because it is an oncoprotein associated with multiple cancer-related diseases, as well as a potential immunomodulator, controlling SHP2 activity is of significant therapeutic interest. Recently in our laboratories, a small molecule inhibitor of SHP2 was identified as an allosteric modulator that stabilizes the autoinhibited conformation of SHP2. A high throughput screen was performed to identify progressable chemical matter, and X-ray crystallography revealed the location of binding in a previously undisclosed allosteric binding pocket. Structure-based drug design was employed to optimize for SHP2 inhibition, and several new protein-ligand interactions were characterized. These studies culminated in the discovery of 6-(4-amino-4-methylpiperidin-1-yl)-3-(2,3-dichlorophenyl)pyrazin-2-amine (SHP099, 1), a potent, selective, orally bioavailable, and efficacious SHP2 inhibitor.


Subject(s)
Antineoplastic Agents/chemistry , Piperidines/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Pyrazines/chemistry , Pyrimidines/chemistry , Administration, Oral , Allosteric Regulation , Allosteric Site , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Drug Design , Female , Heterografts , High-Throughput Screening Assays , Humans , Male , Mice, Inbred C57BL , Mice, Nude , Models, Molecular , Neoplasm Transplantation , Piperidines/chemical synthesis , Piperidines/pharmacokinetics , Piperidines/pharmacology , Protein Conformation , Protein Tyrosine Phosphatase, Non-Receptor Type 11/chemistry , Pyrazines/chemical synthesis , Pyrazines/pharmacokinetics , Pyrazines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Structure-Activity Relationship
6.
ACS Med Chem Lett ; 6(7): 736-40, 2015 Jul 09.
Article in English | MEDLINE | ID: mdl-26191358

ABSTRACT

Further lead optimization on N-acyl-triazolopiperazine antagonists to the neurokinin-3 receptor (NK3R) based on the concurrent improvement in bioactivity and ligand lipophilic efficiency (LLE) is reported. Overall, compound 3 (LLE > 6) emerged as the most efficacious in castrated rat and monkey to lower plasma LH, and it displayed the best off-target safety profile that led to its clinical candidate nomination for the treatment of sex-hormone disorders.

7.
J Med Chem ; 58(7): 3060-82, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25738882

ABSTRACT

Neurokinin-3 receptor (NK3R) has recently emerged as important in modulating the tonic pulsatile gonadotropin-releasing hormone (GnRH) release. We therefore decided to explore NK3R antagonists as therapeutics for sex-hormone disorders that can potentially benefit from lowering GnRH pulsatility with consequent diminished levels of plasma luteinizing hormone (LH) and correspondingly attenuated levels of circulating androgens and estrogens. The discovery and lead optimization of a novel N-acyl-triazolopiperazine NK3R antagonist chemotype achieved through bioisosteric lead change from the high-throughput screening (HTS) hit is described. A concomitant improvement in the antagonist bioactivity and ligand lipophilic efficiency (LLE) parameter were the principal guidelines in the lead optimization efforts. Examples of advanced lead analogues to demonstrate the amenability of this chemotype to achieving a suitable pharmacokinetic (PK) profile are provided as well as pharmacokinetic-pharmacodynamic (PKPD) correlations to analyze the trends observed for LH inhibition in castrated rats and monkeys that served as preliminary in vivo efficacy models.


Subject(s)
High-Throughput Screening Assays/methods , Receptors, Neurokinin-3/antagonists & inhibitors , Structure-Activity Relationship , Androgens/blood , Animals , Brain/drug effects , Brain/metabolism , CHO Cells/drug effects , Caco-2 Cells/drug effects , Chemistry Techniques, Synthetic , Cricetulus , Crystallography, X-Ray , Drug Discovery , ERG1 Potassium Channel , Endocrine System Diseases/blood , Endocrine System Diseases/drug therapy , Ether-A-Go-Go Potassium Channels/chemistry , Ether-A-Go-Go Potassium Channels/metabolism , Humans , Ligands , Luteinizing Hormone/blood , Male , Rats, Sprague-Dawley , Receptors, Neurokinin-3/genetics
8.
J Med Chem ; 56(16): 6495-511, 2013 Aug 22.
Article in English | MEDLINE | ID: mdl-23844574

ABSTRACT

Tankyrase 1 and 2 have been shown to be redundant, druggable nodes in the Wnt pathway. As such, there has been intense interest in developing agents suitable for modulating the Wnt pathway in vivo by targeting this enzyme pair. By utilizing a combination of structure-based design and LipE-based structure efficiency relationships, the core of XAV939 was optimized into a more stable, more efficient, but less potent dihydropyran motif 7. This core was combined with elements of screening hits 2, 19, and 33 and resulted in highly potent, selective tankyrase inhibitors that are novel three pocket binders. NVP-TNKS656 (43) was identified as an orally active antagonist of Wnt pathway activity in the MMTV-Wnt1 mouse xenograft model. With an enthalpy-driven thermodynamic signature of binding, highly favorable physicochemical properties, and high lipophilic efficiency, NVP-TNKS656 is a novel tankyrase inhibitor that is well suited for further in vivo validation studies.


Subject(s)
Acetamides/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Pyrimidinones/pharmacology , Tankyrases/antagonists & inhibitors , Acetamides/administration & dosage , Acetamides/chemistry , Administration, Oral , Animals , Area Under Curve , Biological Availability , Enzyme Inhibitors/administration & dosage , Mice , Models, Molecular , Pyrimidinones/administration & dosage , Pyrimidinones/chemistry , Structure-Activity Relationship
9.
ACS Med Chem Lett ; 4(2): 186-90, 2013 Feb 14.
Article in English | MEDLINE | ID: mdl-24900652

ABSTRACT

Overexpression of the antiapoptotic members of the Bcl-2 family of proteins is commonly associated with cancer cell survival and resistance to chemotherapeutics. Here, we describe the structure-based optimization of a series of N-heteroaryl sulfonamides that demonstrate potent mechanism-based cell death. The role of the acidic nature of the sulfonamide moiety as it relates to potency, solubility, and clearance is examined. This has led to the discovery of novel heterocyclic replacements for the acylsulfonamide core of ABT-737 and ABT-263.

SELECTION OF CITATIONS
SEARCH DETAIL
...