Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 108(11): 117004, 2012 Mar 16.
Article in English | MEDLINE | ID: mdl-22540502

ABSTRACT

A systematic ab initio search for low-enthalpy phases of disilane (Si2H6) at high pressures was performed based on the minima hopping method. We found a novel metallic phase of disilane with Cmcm symmetry, which is enthalpically more favorable than the recently proposed structures of disilane up to 280 GPa, but revealing compositional instability below 190 GPa. The Cmcm phase has a moderate electron-phonon coupling yielding a superconducting transition temperature T(c) of around 20 K at 100 GPa, decreasing to 13 K at 220 GPa. These values are significantly smaller than previously predicted T(c))s for disilane at equivalent pressure. This shows that similar but different crystalline structures of a material can result in dramatically different T(c)'s and stresses the need for a systematic search for a crystalline ground state.

2.
J Diabetes Sci Technol ; 3(2): 233-41, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-20144354

ABSTRACT

BACKGROUND: In the development of noninvasive glucose monitoring technology, it is highly desirable to derive a calibration that relies on neither person-dependent calibration information nor supplementary calibration points furnished by an existing invasive measurement technique (universal calibration). METHOD: By appropriate experimental design and associated analytical methods, we establish the sufficiency of multiple factors required to permit such a calibration. Factors considered are the discrimination of the measurement technique, stabilization of the experimental apparatus, physics-physiology-based measurement techniques for normalization, the sufficiency of the size of the data set, and appropriate exit criteria to establish the predictive value of the algorithm. RESULTS: For noninvasive glucose measurements, using Raman spectroscopy, the sufficiency of the scale of data was demonstrated by adding new data into an existing calibration algorithm and requiring that (a) the prediction error should be preserved or improved without significant re-optimization, (b) the complexity of the model for optimum estimation not rise with the addition of subjects, and (c) the estimation for persons whose data were removed entirely from the training set should be no worse than the estimates on the remainder of the population. Using these criteria, we established guidelines empirically for the number of subjects (30) and skin sites (387) for a preliminary universal calibration. We obtained a median absolute relative difference for our entire data set of 30 mg/dl, with 92% of the data in the Clarke A and B ranges. CONCLUSIONS: Because Raman spectroscopy has high discrimination for glucose, a data set of practical dimensions appears to be sufficient for universal calibration. Improvements based on reducing the variance of blood perfusion are expected to reduce the prediction errors substantially, and the inclusion of supplementary calibration points for the wearable device under development will be permissible and beneficial.


Subject(s)
Blood Glucose Self-Monitoring/standards , Blood Glucose/analysis , Monitoring, Ambulatory/standards , Spectrum Analysis, Raman , Algorithms , Calibration , Humans
3.
Phys Rev Lett ; 100(23): 236106, 2008 Jun 13.
Article in English | MEDLINE | ID: mdl-18643523

ABSTRACT

Atomistic simulations considering larger tip structures than hitherto assumed reveal novel dissipation mechanisms in noncontact atomic force microscopy. The potential energy surfaces of realistic silicon tips exhibit many energetically close local minima that correspond to different structures. Most of them easily deform, thus causing dissipation arising from hysteresis in force versus distance characteristics. Furthermore, saddle points which connect local minima can suddenly switch to connect different minima. Configurations driven into metastability by the tip motion can thus suddenly access lower energy structures when thermal activation becomes allowed within the time required to detect the resulting average dissipation.

4.
Phys Rev Lett ; 95(5): 055501, 2005 Jul 29.
Article in English | MEDLINE | ID: mdl-16090887

ABSTRACT

We present a novel method, which we refer to as the dual minima hopping method, that allows us to find the global minimum of the potential energy surface (PES) within density functional theory for systems where a fast but less accurate calculation of the PES is possible. This method can rapidly find the ground state configuration of clusters and other complex systems with present day computer power by performing a systematic search. We apply the new method to silicon clusters. Even though these systems have already been extensively studied by other methods, we find new global minimum candidates for Si16 and Si19, as well as new low-lying isomers for Si16, Si17, and Si18.

SELECTION OF CITATIONS
SEARCH DETAIL
...