Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Med Imaging ; 38(1): 90-98, 2019 01.
Article in English | MEDLINE | ID: mdl-30010553

ABSTRACT

In this paper, we present the first proof of concept confirming the possibility to record magnetoencephalographic (MEG) signals with optically pumped magnetometers (OPMs) based on the parametric resonance of 4He atoms. The main advantage of this kind of OPM is the possibility to provide a tri-axis vector measurement of the magnetic field at room-temperature (the 4He vapor is neither cooled nor heated). The sensor achieves a sensitivity of 210 fT/ √ Hz in the bandwidth [2-300 Hz]. MEG simulation studies with a brain phantom were cross-validated with real MEG measurements on a healthy subject. For both studies, MEG signal was recorded consecutively with OPMs and superconducting quantum interference devices (SQUIDs) used as reference sensors. For healthy subject MEG recordings, three MEG proofs of concept were carried out: auditory evoked fields, visual evoked fields, and spontaneous activity. M100 peaks have been detected on evoked responses recorded by both OPMs and SQUIDs with no significant difference in latency. Concerning spontaneous activity, an attenuation of the signal power between 8-12 Hz (alpha band) related to eyes opening has been observed with OPM similarly to SQUID. All these results confirm that the room temperature vector 4He OPMs can record MEG signals and provide reliable information on brain activity.


Subject(s)
Brain/physiology , Magnetoencephalography/methods , Signal Processing, Computer-Assisted , Algorithms , Equipment Design , Evoked Potentials, Auditory/physiology , Evoked Potentials, Visual/physiology , Helium , Humans , Magnetoencephalography/instrumentation , Male , Middle Aged , Phantoms, Imaging , Temperature
2.
PLoS One ; 5(5): e10476, 2010 May 04.
Article in English | MEDLINE | ID: mdl-20454563

ABSTRACT

Powering future generations of implanted medical devices will require cumbersome transcutaneous energy transfer or harvesting energy from the human body. No functional solution that harvests power from the body is currently available, despite attempts to use the Seebeck thermoelectric effect, vibrations or body movements. Glucose fuel cells appear more promising, since they produce electrical energy from glucose and dioxygen, two substrates present in physiological fluids. The most powerful ones, Glucose BioFuel Cells (GBFCs), are based on enzymes electrically wired by redox mediators. However, GBFCs cannot be implanted in animals, mainly because the enzymes they rely on either require low pH or are inhibited by chloride or urate anions, present in the Extra Cellular Fluid (ECF). Here we present the first functional implantable GBFC, working in the retroperitoneal space of freely moving rats. The breakthrough relies on the design of a new family of GBFCs, characterized by an innovative and simple mechanical confinement of various enzymes and redox mediators: enzymes are no longer covalently bound to the surface of the electron collectors, which enables use of a wide variety of enzymes and redox mediators, augments the quantity of active enzymes, and simplifies GBFC construction. Our most efficient GBFC was based on composite graphite discs containing glucose oxidase and ubiquinone at the anode, polyphenol oxidase (PPO) and quinone at the cathode. PPO reduces dioxygen into water, at pH 7 and in the presence of chloride ions and urates at physiological concentrations. This GBFC, with electrodes of 0.133 mL, produced a peak specific power of 24.4 microW mL(-1), which is better than pacemakers' requirements and paves the way for the development of a new generation of implantable artificial organs, covering a wide range of medical applications.


Subject(s)
Bioelectric Energy Sources , Glucose/metabolism , Implants, Experimental , Animals , Catechol Oxidase/metabolism , Electrodes , Glucose Oxidase/metabolism , Hydrogen-Ion Concentration , Male , Oxidation-Reduction , Prosthesis Implantation , Rats , Rats, Wistar , Time Factors , Ubiquinone/metabolism , Urea/metabolism , Urease/metabolism
3.
J Biol Chem ; 279(41): 42374-82, 2004 Oct 08.
Article in English | MEDLINE | ID: mdl-15269206

ABSTRACT

The transcription factor NF-kappaB is involved in the transcriptional control of more than 150 genes, but the way it acts at the level of nucleosomal templates is not known. Here we report on a study examining the interaction of NF-kappaB p50 with its DNA recognition sequence in a positioned nucleosome. We demonstrate that NF-kappaB p50 was able to bind to the nucleosome with an apparent association constant close to that for free DNA. In agreement with this, the affinity of NF-kappaB p50 binding does not depend on the localization of its recognition sequence relative to the nucleosome dyad axis. In addition, the binding of NF-kappaB p50 does not induce eviction of histones and does not perturb the overall structure of the nucleosome. The NF-kappaB p50-nucleosome complex exhibits, however, local structural alterations within the NF-kappaB p50 recognition site. Importantly, these alterations were very similar to those found in the NF-kappaB p50-DNA complex. Our data suggest that NF-kappaB p50 can accommodate the distorted, bent DNA within the nucleosome. This peculiar property of NF-kappaB p50 might have evolved to meet the requirements for its function as a central switch for stress responses.


Subject(s)
Histones/chemistry , NF-kappa B/chemistry , NF-kappa B/metabolism , Nucleosomes/metabolism , Animals , Binding Sites , Cryoelectron Microscopy , DNA/chemistry , Deoxyribonuclease I/metabolism , Dose-Response Relationship, Drug , Electrophoresis, Polyacrylamide Gel , Hydroxyl Radical , Lasers , NF-kappa B p50 Subunit , Oligonucleotides/chemistry , Plasmids/metabolism , Protein Binding , Time Factors , Transcription, Genetic , Ultraviolet Rays , Xenopus , Xenopus laevis
4.
Curr Genet ; 41(6): 425-32, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12228812

ABSTRACT

We disrupted the Aspergillus niger gene argB, encoding ornithine transcarbamylase. Full characterisation of the argB deletion was performed by Southern blot analysis, growth tests and by means of mitotic recombination, complementation and transformation. The argB locus was found to be physically removed, thus creating an auxotrophic mutation. The latter can be supplemented by addition of arginine into the culture medium. The argB gene and its disruption do not correlate to the argI13 (formerly argB13) allele described. The delta argB is on chromosome I whereas argI13 is on V. In addition, the argI13 mutation can only be complemented by the A. nidulans argB gene, whereas the new argB deletion can be complemented by both the A. niger and A. nidulans argB genes. The delta argB strain has been used to generate several strains in a breeding programme and to study the expression of important genes, such as areA and kexB.


Subject(s)
Arginine/genetics , Aspergillus niger/genetics , Genes, Fungal , Ornithine Carbamoyltransferase/genetics , Amino Acid Sequence , Arginine/biosynthesis , Aspergillus niger/physiology , Blotting, Southern , Chromosomes, Fungal , Gene Deletion , Genetic Complementation Test , Molecular Sequence Data , Mutation , Ornithine Carbamoyltransferase/physiology , Plasmids , Recombination, Genetic , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...