Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 392(6674): 353-8, 1998 Mar 26.
Article in English | MEDLINE | ID: mdl-9537320

ABSTRACT

Aquifex aeolicus was one of the earliest diverging, and is one of the most thermophilic, bacteria known. It can grow on hydrogen, oxygen, carbon dioxide, and mineral salts. The complex metabolic machinery needed for A. aeolicus to function as a chemolithoautotroph (an organism which uses an inorganic carbon source for biosynthesis and an inorganic chemical energy source) is encoded within a genome that is only one-third the size of the E. coli genome. Metabolic flexibility seems to be reduced as a result of the limited genome size. The use of oxygen (albeit at very low concentrations) as an electron acceptor is allowed by the presence of a complex respiratory apparatus. Although this organism grows at 95 degrees C, the extreme thermal limit of the Bacteria, only a few specific indications of thermophily are apparent from the genome. Here we describe the complete genome sequence of 1,551,335 base pairs of this evolutionarily and physiologically interesting organism.


Subject(s)
Genome, Bacterial , Gram-Negative Aerobic Rods and Cocci/genetics , Chromosome Mapping , Chromosomes, Bacterial , Citric Acid Cycle , DNA Repair , DNA, Bacterial/biosynthesis , DNA, Bacterial/genetics , Gram-Negative Aerobic Rods and Cocci/metabolism , Molecular Sequence Data , Oxidative Stress , Phylogeny , Protein Biosynthesis , Temperature , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...