Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1315: 342757, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38879205

ABSTRACT

BACKGROUND: Chlorinated paraffins (CPs) are industrial chemicals categorised as persistent organic pollutants because of their toxicity, persistency and tendency to long-range transport, bioaccumulation and biomagnification. Despite having been the subject of environmental attention for decades, analytical methods for CPs still struggle reaching a sufficient degree of accuracy. Among the issues negatively impacting the quantification of CPs, the unavailability of well-characterised standards, both as pure substances and as matrix (certified) reference materials (CRMs), has played a major role. The focus of this study was to provide a matrix CRM as quality control tool to improve the comparability of CPs measurement results. RESULTS: We present the process of certification of ERM®-CE100, the first fish reference material assigned with certified values for the mass fraction of short-chain and medium-chain chlorinated paraffins (SCCPs and MCCPs, respectively). The certification was performed in accordance with ISO 17034:2016 and ISO Guide 35:2017, with the value assignment step carried out via an intercomparison of laboratories of demonstrated competence in CPs analysis and applying procedures based on different analytical principles. After confirmation of the homogeneity and stability of the CRM, two certified values were assigned for SCCPs, depending on the calibrants used: 31 ± 9 µg kg-1 and 23 ± 7 µg kg-1. The MCCPs certified value was established as 44 ± 17 µg kg-1. All assigned values are relative to wet weight in the CRM that was produced as a fish paste to enhance similarity to routine biota samples. SIGNIFICANCE AND NOVELTY: The fish tissue ERM-CE100 is the first matrix CRM commercially available for the analysis of CPs, enabling analytical laboratories to improve the accuracy and the metrological traceability of their measurements. The certified CPs values are based on results obtained by both gas and liquid chromatography coupled with various mass spectrometric techniques, offering thus a broad validity to laboratories employing different analytical methods and equipment.


Subject(s)
Hydrocarbons, Chlorinated , Paraffin , Reference Standards , Hydrocarbons, Chlorinated/analysis , Paraffin/analysis , Paraffin/chemistry , Animals , Fishes
2.
Chemosphere ; 286(Pt 3): 131878, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34416588

ABSTRACT

The determination of chlorinated paraffins (CPs) has posed an intractable challenge in analytical chemistry for over three decades. The combination of an as yet unspecifiable number (tens - hundreds of thousands) of individual congeners in mass produced commercial CP mixtures and the steric interactions between them, contrive to defy efforts to characterise their residual occurrences in environmental compartments, food and human tissues. However, recent advances in instrumentation (mass spectrometric detectors and nuclear magnetic resonance), combined with interlaboratory studies, have allowed a better insight into the nature of the conundrums. These include the variability of results, even between experienced laboratories when there is insufficient matching between analytical standards and occurrence profiles, the poor (or no) response of some instrumentation to some CP congener configurations (multiple terminal chlorines or < four chlorines) and the occurrence of chlorinated olefins in commercial mixtures. The findings illustrate some limitations in the existing set of commercially available standards. These include cross-contamination of some standards (complex CP mixtures), an insufficient number of single chain standards (existing ones do not fully reflect food/biota occurrences), lack of homologue group standards and unsuitability of some configurationally defined CP congeners/labelled standards (poor instrument response and a smaller likelihood of occurrence in commercial mixtures). They also indicate an underestimation in reported occurrences arising from those CPs that are unresponsive during measurement. A more extensive set of standards is suggested and while this might not be a panacea for accurate CP determination, it would reduce the layers of complexity inherent in the analysis.


Subject(s)
Hydrocarbons, Chlorinated , Paraffin , China , Chlorine , Environmental Monitoring , Humans , Hydrocarbons, Chlorinated/analysis , Mass Spectrometry , Paraffin/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...