Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 22(7): 2595-2602, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35235321

ABSTRACT

The integration of semiconductor Josephson junctions (JJs) in superconducting quantum circuits provides a versatile platform for hybrid qubits and offers a powerful way to probe exotic quasiparticle excitations. Recent proposals for using circuit quantum electrodynamics (cQED) to detect topological superconductivity motivate the integration of novel topological materials in such circuits. Here, we report on the realization of superconducting transmon qubits implemented with (Bi0.06Sb0.94)2Te3 topological insulator (TI) JJs using ultrahigh vacuum fabrication techniques. Microwave losses on our substrates, which host monolithically integrated hardmasks used for the selective area growth of TI nanostructures, imply microsecond limits to relaxation times and, thus, their compatibility with strong-coupling cQED. We use the cavity-qubit interaction to show that the Josephson energy of TI-based transmons scales with their JJ dimensions and demonstrate qubit control as well as temporal quantum coherence. Our results pave the way for advanced investigations of topological materials in both novel Josephson and topological qubits.

2.
Opt Express ; 29(5): 7410-7417, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33726242

ABSTRACT

We optically designed and investigated two deterministic light-trapping concepts named "Hutong" (wafer thickness dependent, patch-like arrangement of "V" grooves with alternating orientations) and "VOSTBAT" (one directional "V" grooves at the front and saw-tooth like structures at the back) for the application in emerging thin silicon heterojunction (SHJ) solar cells. Calculated photocurrent density (Jph) (by weighting the spectrally resolved absorptance with AM1.5g spectrum and integrating over the wavelength) showed that both the Hutong and VOSTBAT structures exceed the Lambertian reference and achieved Jph of 41.72 mA/cm2 and 41.86 mA/cm2, respectively, on 60 µm thin wafers in the case of directional, normal incidence.

3.
ACS Appl Mater Interfaces ; 10(17): 14259-14263, 2018 May 02.
Article in English | MEDLINE | ID: mdl-29664611

ABSTRACT

Transparent passivated contacts (TPCs) using a wide band gap microcrystalline silicon carbide (µc-SiC:H(n)), silicon tunnel oxide (SiO2) stack are an alternative to amorphous silicon-based contacts for the front side of silicon heterojunction solar cells. In a systematic study of the µc-SiC:H(n)/SiO2/c-Si contact, we investigated selected wet-chemical oxidation methods for the formation of ultrathin SiO2, in order to passivate the silicon surface while ensuring a low contact resistivity. By tuning the SiO2 properties, implied open-circuit voltages of 714 mV and contact resistivities of 32 mΩ cm2 were achieved using µc-SiC:H(n)/SiO2/c-Si as transparent passivated contacts.

4.
Nanoscale ; 10(14): 6651-6659, 2018 Apr 05.
Article in English | MEDLINE | ID: mdl-29582026

ABSTRACT

In this work, we have improved the absorption properties of thin film solar cells by introducing light trapping reflectors deposited onto self-assembled nanostructures. The latter consist of a disordered array of nanopillars and are fabricated by polymer blend lithography. Their broadband light scattering properties are exploited to enhance the photocurrent density of thin film devices, here based on hydrogenated amorphous silicon active layers. We demonstrate that these light scattering nanopillars yield a short-circuit current density increase of +33%rel with respect to equivalent solar cells processed on a planar reflector. Moreover, we experimentally show that they outperform randomly textured substrates that are commonly used for achieving efficient light trapping. Complementary optical simulations are conducted on an accurate 3D model to analyze the superior light harvesting properties of the nanopillar array and to derive general design rules. Our approach allows one to easily tune the morphology of the self-assembled nanostructures, is up-scalable and operated at room temperature, and is applicable to other photovoltaic technologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...