Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 4(11): e878, 2010 Nov 09.
Article in English | MEDLINE | ID: mdl-21085471

ABSTRACT

BACKGROUND: Despite the global threat caused by arthropod-borne viruses, there is not an efficient method for screening vector populations to detect novel viral sequences. Current viral detection and surveillance methods based on culture can be costly and time consuming and are predicated on prior knowledge of the etiologic agent, as they rely on specific oligonucleotide primers or antibodies. Therefore, these techniques may be unsuitable for situations when the causative agent of an outbreak is unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study we explored the use of high-throughput pyrosequencing for surveillance of arthropod-borne RNA viruses. Dengue virus, a member of the positive strand RNA Flavivirus family that is transmitted by several members of the Aedes genus of mosquitoes, was used as a model. Aedes aegypti mosquitoes experimentally infected with dengue virus type 1 (DENV-1) were pooled with noninfected mosquitoes to simulate samples derived from ongoing arbovirus surveillance programs. Using random-primed methods, total RNA was reverse-transcribed and resulting cDNA subjected to 454 pyrosequencing. CONCLUSIONS/SIGNIFICANCE: In two types of samples, one with 5 adult mosquitoes infected with DENV-1- and the other with 1 DENV-1 infected mosquito and 4 noninfected mosquitoes, we identified DENV-1 DNA sequences. DENV-1 sequences were not detected in an uninfected control pool of 5 adult mosquitoes. We calculated the proportion of the Ae. aegypti metagenome contributed by each infecting Dengue virus genome (p(IP)), which ranged from 2.75×10(-8) to 1.08×10(-7). DENV-1 RNA was sufficiently concentrated in the mosquito that its detection was feasible using current high-throughput sequencing instrumentation. We also identified some of the components of the mosquito microflora on the basis of the sequence of expressed RNA. This included members of the bacterial genera Pirellula and Asaia, various fungi, and a potentially uncharacterized mycovirus.


Subject(s)
Aedes/virology , Dengue Virus/isolation & purification , High-Throughput Nucleotide Sequencing/methods , Insect Vectors/virology , Animals , Arboviruses/genetics , Arboviruses/isolation & purification , Dengue/virology , Dengue Virus/genetics , Humans
2.
PLoS One ; 5(8): e12397, 2010 Aug 25.
Article in English | MEDLINE | ID: mdl-20811637

ABSTRACT

BACKGROUND: The anthrax letter attacks of 2001 highlighted the need for rapid identification of biothreat agents not only for epidemiological surveillance of the intentional outbreak but also for implementing appropriate countermeasures, such as antibiotic treatment, in a timely manner to prevent further casualties. It is clear from the 2001 cases that survival may be markedly improved by administration of antimicrobial therapy during the early symptomatic phase of the illness; i.e., within 3 days of appearance of symptoms. Microbiological detection methods are feasible only for organisms that can be cultured in vitro and cannot detect all genetic modifications with the exception of antibiotic resistance. Currently available immuno or nucleic acid-based rapid detection assays utilize known, organism-specific proteins or genomic DNA signatures respectively. Hence, these assays lack the ability to detect novel natural variations or intentional genetic modifications that circumvent the targets of the detection assays or in the case of a biological attack using an antibiotic resistant or virulence enhanced Bacillus anthracis, to advise on therapeutic treatments. METHODOLOGY/PRINCIPAL FINDINGS: We show here that the Roche 454-based pyrosequencing can generate whole genome draft sequences of deep and broad enough coverage of a bacterial genome in less than 24 hours. Furthermore, using the unfinished draft sequences, we demonstrate that unbiased identification of known as well as heretofore-unreported genetic modifications that include indels and single nucleotide polymorphisms conferring antibiotic and phage resistances is feasible within the next 12 hours. CONCLUSIONS/SIGNIFICANCE: Second generation sequencing technologies have paved the way for sequence-based rapid identification of both known and previously undocumented genetic modifications in cultured, conventional and newly emerging biothreat agents. Our findings have significant implications in the context of whole genome sequencing-based routine clinical diagnostics as well as epidemiological surveillance of natural disease outbreaks caused by bacterial and viral agents.


Subject(s)
Bacillus anthracis/genetics , Genome, Bacterial/genetics , Sequence Analysis, DNA/methods , Bacillus anthracis/drug effects , Bacillus anthracis/physiology , Bacillus anthracis/virology , Bacteriophages/physiology , Ciprofloxacin/pharmacology , Computational Biology , Drug Resistance, Bacterial/genetics , Erythromycin/pharmacology , Laboratories , Mutation , Time Factors
3.
Appl Environ Microbiol ; 74(21): 6792-6, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18791014

ABSTRACT

The genome sequence of a Bacillus anthracis-specific clear plaque mutant phage, AP50c, contains 31 open reading frames spanning 14,398 bp, has two mutations compared to wild-type AP50t, and has a colinear genome architecture highly similar to that of gram-positive Tectiviridae phages. Spontaneous AP50c-resistant B. anthracis mutants exhibit a mucoid colony phenotype.


Subject(s)
Bacillus Phages/genetics , Bacillus anthracis/virology , DNA, Viral/genetics , Genome, Viral , Bacteriolysis , Base Sequence , Gene Order , Molecular Sequence Data , Mutation, Missense , Point Mutation , Sequence Analysis, DNA , Synteny , Tectiviridae/genetics , Viral Plaque Assay , Virion/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL