Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 20912, 2023 11 27.
Article in English | MEDLINE | ID: mdl-38017283

ABSTRACT

When asked to remember a color, do people remember a point estimate (e.g., a particular shade of red), a point estimate plus an uncertainty estimate, or are memory representations rich probabilistic distributions over feature space? We asked participants to report the color of a circle held in working memory. Rather than collecting a single report per trial, we had participants place multiple bets to create trialwise uncertainty distributions. Bet dispersion correlated with performance, indicating that internal uncertainty guided bet placement. While the first bet was on average the most precisely placed, the later bets systematically shifted the distribution closer to the target, resulting in asymmetrical distributions about the first bet. This resulted in memory performance improvements when averaging across bets, and overall suggests that memory representations contain more information than can be conveyed by a single response. The later bets contained target information even when the first response would generally be classified as a guess or report of an incorrect item, suggesting that such failures are not all-or-none. This paradigm provides multiple pieces of evidence that memory representations are rich and probabilistic. Crucially, standard discrete response paradigms underestimate the amount of information in memory representations.


Subject(s)
Gambling , Memory, Short-Term , Humans , Memory, Short-Term/physiology , Cognition , Uncertainty
2.
Neuroscience ; 523: 105-117, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37245693

ABSTRACT

Neurogenesis occurs throughout adulthood within the dentate gyrus, and evidence indicates that these new neurons play a critical role in both spatial and social memory. However, a vast majority of past research on adult neurogenesis has involved experiments with captive mice and rats, making the generalizability of results to natural settings questionable. We assessed the connection between adult neurogenesis and memory by measuring the home range size of wild-caught, free-ranging meadow voles (Microtus pennsylvanicus). Adult male voles (n = 18) were captured, fitted with radio collars, and released back into their natural habitat, where each vole's home range was assessed using 40 radio-telemetry fixes over the course of 5 evenings. Voles were then recaptured, and brain tissue was collected. Cellular markers of cell proliferation (pHisH3, Ki67), neurogenesis (DCX), and pyknosis were labeled on histological sections and then quantified using either fluorescent or light microscopy. Voles with larger home ranges had significantly higher pHisH3+ cell densities within the granule cell layer and subgranular zone (GCL + SGZ) of the dentate gyrus and higher Ki67+ cell densities in the dorsal GCL + SGZ. Voles with larger ranges also had significantly higher pyknotic cell densities in the entire GCL + SGZ and in the dorsal GCL + SGZ. These results support the hypothesis that cell proliferation and cell death within the hippocampus are involved with spatial memory formation. However, a marker of neurogenesis (DCX+) was not correlated with range size, suggesting that there may be selective cellular turnover in the dentate gyrus when a vole is ranging through its environment.


Subject(s)
Dentate Gyrus , Homing Behavior , Animals , Male , Rats , Mice , Dentate Gyrus/metabolism , Ki-67 Antigen/metabolism , Cell Proliferation/physiology , Cell Death , Neurogenesis/physiology , Arvicolinae/physiology
3.
Hippocampus ; 30(12): 1313-1326, 2020 12.
Article in English | MEDLINE | ID: mdl-32894595

ABSTRACT

Individuals can use diverse behavioral strategies to navigate their environment including hippocampal-dependent place strategies reliant upon cognitive maps and striatal-dependent response strategies reliant upon egocentric body turns. The existence of multiple memory systems appears to facilitate successful navigation across a wide range of environmental and physiological conditions. The mechanisms by which these systems interact to ultimately generate a unitary behavioral response, however, remain unclear. We trained 20 male, Sprague-Dawley rats on a dual-solution T-maze while simultaneously recording local field potentials that were targeted to the dorsolateral striatum and dorsal hippocampus. Eight rats spontaneously exhibited a place strategy while the remaining 12 rats exhibited a response strategy. Interindividual differences in behavioral strategy were associated with distinct patterns of LFP activity between the dorsolateral striatum and dorsal hippocampus. Specifically, striatal-hippocampal theta activity was in-phase in response rats and out-of-phase in place rats and response rats exhibited elevated striatal-hippocampal coherence across a wide range of frequency bands. These contrasting striatal-hippocampal activity regimes were (a) present during both maze-learning and a 30 min premaze habituation period and (b) could be used to train support vector machines to reliably predict behavioral strategy. Distinct patterns of neuronal activity across multiple memory systems, therefore, appear to bias behavioral strategy selection and thereby contribute to interindividual differences in behavior.


Subject(s)
Corpus Striatum/physiology , Hippocampus/physiology , Maze Learning/physiology , Memory/physiology , Spatial Navigation/physiology , Animals , Electrodes, Implanted , Forecasting , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...