Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Child Neurol Soc ; 1(4): 305-311, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38746788

ABSTRACT

Objectives: Lemniscal (motor-related) and spinothalamic (neuropathic pain-related) somatosensory abnormalities affect different subsets of adults with cerebral palsy (CP). Lemniscal/motor abnormalities are associated with posterior thalamic radiation white matter disruption in individuals with CP and white matter injury. We tested the hypothesis that neuropathic pain symptoms in this population are rather associated with injury of the somatosensory (posterior group nuclei) thalamus. Methods: In this cross-sectional study, communicative adults with CP and bilateral white matter injury and neurotypical control participants volunteered to self-report pain symptoms and undergo research MRI. Posterior group thalamic nuclei volume was computed and correlated against neuropathic pain scores. Results: Participants with CP (n=6) had, on average, 24% smaller posterior group thalamic volumes (95% CI [10-39%]; corrected p=0.01) than control participants. More severe volume loss was correlated with more severe neuropathic pain scores (ρ=-0.87 [-0.99,-0.20]; p=0.02). Discussion: Association with thalamic volume loss suggests that neuropathic pain in adults with CP may frequently be central neuropathic pain. Complementing assessments of white matter microstructure, regional brain volumes hold promise as diagnostic biomarkers for central neuropathic pain in individuals with structural brain disorders.

2.
J Neuroinflammation ; 18(1): 242, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34666799

ABSTRACT

BACKGROUND: Chorioamnionitis (CHORIO) is a principal risk factor for preterm birth and is the most common pathological abnormality found in the placentae of preterm infants. CHORIO has a multitude of effects on the maternal-placental-fetal axis including profound inflammation. Cumulatively, these changes trigger injury in the developing immune and central nervous systems, thereby increasing susceptibility to chronic sequelae later in life. Despite this and reports of neural-immune changes in children with cerebral palsy, the extent and chronicity of the peripheral immune and neuroinflammatory changes secondary to CHORIO has not been fully characterized. METHODS: We examined the persistence and time course of peripheral immune hyper-reactivity in an established and translational model of perinatal brain injury (PBI) secondary to CHORIO. Pregnant Sprague-Dawley rats underwent laparotomy on embryonic day 18 (E18, preterm equivalent). Uterine arteries were occluded for 60 min, followed by intra-amniotic injection of lipopolysaccharide (LPS). Serum and peripheral blood mononuclear cells (PBMCs) were collected at young adult (postnatal day P60) and middle-aged equivalents (P120). Serum and PBMCs secretome chemokines and cytokines were assayed using multiplex electrochemiluminescent immunoassay. Multiparameter flow cytometry was performed to interrogate immune cell populations. RESULTS: Serum levels of interleukin-1ß (IL-1ß), IL-5, IL-6, C-X-C Motif Chemokine Ligand 1 (CXCL1), tumor necrosis factor-α (TNF-α), and C-C motif chemokine ligand 2/monocyte chemoattractant protein-1 (CCL2/MCP-1) were significantly higher in CHORIO animals compared to sham controls at P60. Notably, CHORIO PBMCs were primed. Specifically, they were hyper-reactive and secreted more inflammatory mediators both at baseline and when stimulated in vitro. While serum levels of cytokines normalized by P120, PBMCs remained primed, and hyper-reactive with a robust pro-inflammatory secretome concomitant with a persistent change in multiple T cell populations in CHORIO animals. CONCLUSIONS: The data indicate that an in utero inflammatory insult leads to neural-immune changes that persist through adulthood, thereby conferring vulnerability to brain and immune system injury throughout the lifespan. This unique molecular and cellular immune signature including sustained peripheral immune hyper-reactivity (SPIHR) and immune cell priming may be a viable biomarker of altered inflammatory responses following in utero insults and advances our understanding of the neuroinflammatory cascade that leads to perinatal brain injury and later neurodevelopmental disorders, including cerebral palsy.


Subject(s)
Brain Injuries/metabolism , Brain/metabolism , Chorioamnionitis/metabolism , Inflammation Mediators/metabolism , Leukocytes, Mononuclear/metabolism , Age Factors , Animals , Animals, Newborn , Biomarkers/metabolism , Brain/immunology , Brain Injuries/immunology , Chorioamnionitis/immunology , Female , Inflammation Mediators/immunology , Leukocytes, Mononuclear/immunology , Male , Pregnancy , Rats , Rats, Sprague-Dawley
3.
Front Pain Res (Lausanne) ; 1: 553026, 2020.
Article in English | MEDLINE | ID: mdl-35295692

ABSTRACT

Chronic pain is prevalent in adults with cerebral palsy. We aimed to explore associations between chronic pain and somatosensory, motor, cognitive, etiologic, and environmental factors in adults with cerebral palsy. This cross-sectional study enrolled 17 adult participants with cerebral palsy (mean age 31 years; 8 female; Gross Motor Functional Classification Status levels I-V) able to self-report and 10 neurotypical adult volunteers (mean age 34 years; 9 female). Participants reported pain characteristics, demographics, and affective factors. Physical examination included somatosensory and motor evaluation. Between-group comparisons used a ranksum test, and correlation analyses estimated effect size in terms of shared variance (ρ2). Individuals with cerebral palsy reported greater pain intensity, neuropathic qualities, and nociceptive qualities than control participants. Higher pain intensity was associated with female gender (ρ2 = 16%), anxiety/depression symptoms (ρ2 = 10%), and lower household income (ρ2 = 19%). It was also associated with better communicative ability (ρ2 = 21%), spinothalamic (sharp/temperature) sensory abnormalities (ρ2 = 33%), and a greater degree of prematurity (ρ2 = 17%). This study highlights similarity of chronic pain associations in people with cerebral palsy with patterns seen in other populations with chronic pain. Spinothalamic sensory abnormalities suggest central pain mechanisms.

4.
Clin Orthop Relat Res ; 471(4): 1208-13, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23054519

ABSTRACT

BACKGROUND: Obesity is a risk factor for various orthopaedic diseases, including fractures. Obesity's influence on circulating hormones and cytokines and bone mineralization ultimately influences the body's osteogenic response and bone mineralization, potentially increasing the risk of fracture and impacting fracture healing. QUESTIONS/PURPOSES: Does obesity delay fracture recovery in overweight or obese children as measured by the time to release to normal activity? Is this average time for return to activity influenced by the mechanism of the injury? Does obesity's effect on mineralization and loading in overweight or obese children lead to a greater proportion of upper extremity fracture versus lower extremity fracture? METHODS: We prospectively followed 273 patients with nonpathologic long bone fractures treated from January 2010 to October 2011. Patients were stratified into obese/overweight, normal weight, and underweight groups. All patients were followed until release to regular activities (mean, 41 days; range, 13-100 days). RESULTS: Release to regular activities occurred sooner in obese/overweight than in normal weight patients: 39 and 42 days, respectively. A greater proportion of obese/overweight patients had low to moderate energy mechanisms of injury than did normal weight patients, but we found no difference between the groups in terms of return to activity when stratified by mechanism. There was also no difference in the proportion of upper extremity injuries between the two groups. CONCLUSIONS: Obese/overweight children did not have a delay in release to activities compared with children of normal weight. LEVEL OF EVIDENCE: Level II, prognostic study. See Guidelines for Authors for a complete description of levels of evidence.


Subject(s)
Fracture Healing/physiology , Fractures, Bone/etiology , Fractures, Bone/physiopathology , Obesity/complications , Obesity/physiopathology , Adolescent , Body Mass Index , Child , Child, Preschool , Female , Humans , Infant , Male , Prospective Studies , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...