Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Endocrinol (Lausanne) ; 12: 795116, 2021.
Article in English | MEDLINE | ID: mdl-34956100

ABSTRACT

Adrenocortical carcinoma (ACC) is a rare endocrine malignancy and treatment of advanced disease is challenging. Clinical trials with multi-tyrosine kinase inhibitors in the past have yielded disappointing results. Here, we investigated fibroblast growth factor (FGF) receptors and their pathways in adrenocortical tumors as potential treatment targets. We performed real-time RT-PCR of 93 FGF pathway related genes in a cohort of 39 fresh frozen benign and malignant adrenocortical, 9 non-adrenal tissues and 4 cell lines. The expression of FGF receptors was validated in 166 formalin-fixed paraffin embedded (FFPE) tissues using RNA in situ hybridization (RNAscope) and correlated with clinical data. In malignant compared to benign adrenal tumors, we found significant differences in the expression of 16/94 FGF receptor pathway related genes. Genes involved in tissue differentiation and metastatic spread through epithelial to mesechymal transition were most strongly altered. The therapeutically targetable FGF receptors 1 and 4 were upregulated 4.6- and 6-fold, respectively, in malignant compared to benign adrenocortical tumors, which was confirmed by RNAscope in FFPE samples. High expression of FGFR1 and 4 was significantly associated with worse patient prognosis in univariate analysis. After multivariate adjustment for the known prognostic factors Ki-67 and ENSAT tumor stage, FGFR1 remained significantly associated with recurrence-free survival (HR=6.10, 95%CI: 1.78 - 20.86, p=0.004) and FGFR4 with overall survival (HR=3.23, 95%CI: 1.52 - 6.88, p=0.002). Collectively, our study supports a role of FGF pathways in malignant adrenocortical tumors. Quantification of FGF receptors may enable a stratification of ACC for the use of FGFR inhibitors in future clinical trials.


Subject(s)
Adrenal Cortex Neoplasms/metabolism , Adrenocortical Carcinoma/metabolism , Biomarkers, Tumor/biosynthesis , Receptor, Fibroblast Growth Factor, Type 1/biosynthesis , Receptor, Fibroblast Growth Factor, Type 4/biosynthesis , Adrenal Cortex Neoplasms/genetics , Adrenal Cortex Neoplasms/mortality , Adrenocortical Carcinoma/genetics , Adrenocortical Carcinoma/mortality , Adult , Biomarkers, Tumor/genetics , Female , Humans , Male , Middle Aged , Real-Time Polymerase Chain Reaction/methods , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 4/genetics , Survival Rate/trends
2.
Sci Adv ; 7(8)2021 02.
Article in English | MEDLINE | ID: mdl-33608270

ABSTRACT

Mutations in the PRKACA gene are the most frequent cause of cortisol-producing adrenocortical adenomas leading to Cushing's syndrome. PRKACA encodes for the catalytic subunit α of protein kinase A (PKA). We already showed that PRKACA mutations lead to impairment of regulatory (R) subunit binding. Furthermore, PRKACA mutations are associated with reduced RIIß protein levels; however, the mechanisms leading to reduced RIIß levels are presently unknown. Here, we investigate the effects of the most frequent PRKACA mutation, L206R, on regulatory subunit stability. We find that Ser114 phosphorylation of RIIß is required for its degradation, mediated by caspase 16. Last, we show that the resulting reduction in RIIß protein levels leads to increased cortisol secretion in adrenocortical cells. These findings reveal the molecular mechanisms and pathophysiological relevance of the R subunit degradation caused by PRKACA mutations, adding another dimension to the deregulation of PKA signaling caused by PRKACA mutations in adrenal Cushing's syndrome.

SELECTION OF CITATIONS
SEARCH DETAIL
...