Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Biomed Mater Res A ; 67(1): 121-9, 2003 Oct 01.
Article in English | MEDLINE | ID: mdl-14517869

ABSTRACT

This study describes an approach to obtaining 3-D scaffolds for tissue engineering that allows the incorporation and release of biologically active proteins to stimulate cell function. Laminin was adsorbed on the textured surfaces of binary 70S30C (70 mol % SiO(2), 30 mol % CaO) and ternary 58S (60 mol % SiO(2), 36 mol % CaO, 4 mol % P(2)O(5)) foams. The covalent bonds between the binding sites of the proteins and the ligands on the scaffolds' surfaces did not denaturate the proteins. In vitro studies show that the foams modified with chemical groups and coated with laminin were bioactive, as demonstrated by the formation of a crystalline hydroxy carbonate apatite (HCA) layer formed on the surfaces of the foams upon exposure to simulated body fluid (SBF). The release of proteins from the foams also was investigated. Sustained and controlled release from the scaffolds over a 30-day period was achieved. Laminin release from the bioactive foams followed the dissolution rate of the material network. These results suggest that bioactive foams have the potential to act as scaffolds for soft-tissue engineering with a controlled release of proteins that can induce tissue formation or regeneration.


Subject(s)
Biocompatible Materials/metabolism , Proteins/metabolism , Apatites/chemical synthesis , Apatites/chemistry , Biocompatible Materials/chemistry , Kinetics , Laminin/metabolism , Protein Structure, Secondary , Spectroscopy, Fourier Transform Infrared
2.
J Mater Sci Mater Med ; 13(9): 837-42, 2002 Sep.
Article in English | MEDLINE | ID: mdl-15348547

ABSTRACT

The aim of this work was to use sol-gel processing to develop bioactive materials to serve as scaffolds for tissue engineering that will allow the incorporation and release of proteins to stimulate cell function and tissue growth. We obtained organofunctionalized silica with large content of amine and mercaptan groups (up to 25%). The developed method can allow the incorporation and delivery of proteins at a controlled rate. We also produced bioactive foams with binary SiO(2)-CaO and ternary SiO(2)-CaO-P(2)O(5) compositions. In order to enhance peptide-material surface properties, the bioactive foams were modified with amine and mercaptan groups. These materials exhibit a highly interconnected macroporous network and high surface area. These textural features together with the incorporation of organic functionally groups may enable them to be used as scaffolds for the engineering of soft tissue.

SELECTION OF CITATIONS
SEARCH DETAIL