Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 56(67): 9628-9631, 2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32696768

ABSTRACT

A Fe-MOF was obtained from aqueous solution in high yield under reflux. The water sorption properties were studied by powder X-ray diffraction, volumetric and gravimetric sorption experiments and molecular simulations. The subsequent filling of hydrophobic and hydrophilic pores as well as the stability of the material are demonstrated.

2.
Nat Commun ; 10(1): 3025, 2019 Jul 09.
Article in English | MEDLINE | ID: mdl-31289274

ABSTRACT

Efficient use of energy for cooling applications is a very important and challenging field in science. Ultra-low temperature actuated (Tdriving < 80 °C) adsorption-driven chillers (ADCs) with water as the cooling agent are one environmentally benign option. The nanoscale metal-organic framework [Al(OH)(C6H2O4S)] denoted CAU-23 was discovered that possess favorable properties, including water adsorption capacity of 0.37 gH2O/gsorbent around p/p0 = 0.3 and cycling stability of at least 5000 cycles. Most importantly the material has a driving temperature down to 60 °C, which allows for the exploitation of yet mostly unused temperature sources and a more efficient use of energy. These exceptional properties are due to its unique crystal structure, which was unequivocally elucidated by single crystal electron diffraction. Monte Carlo simulations were performed to reveal the water adsorption mechanism at the atomic level. With its green synthesis, CAU-23 is an ideal material to realize ultra-low temperature driven ADC devices.

3.
Adv Mater ; 30(6)2018 Feb.
Article in English | MEDLINE | ID: mdl-29271497

ABSTRACT

The demand for cooling devices has increased during the last years and this trend will continue. Adsorption-driven chillers (ADCs) using water as the working fluid and low temperature waste energy for regeneration are an environmentally friendly alternative to currently employed cooling devices and can concurrently help to dramatically decrease energy consumption. Due to the ideal water sorption behavior and proven lifetime stability of [Al(OH)(m-BDC)] ∙ x H2 O (m-BDC2- = 1,3-benzenedicarboxylate), also denoted CAU-10-H, a green very robust synthesis process under reflux, with high yields up to 95% is developed and scaled up to 12 kg-scale. Shaping of the adsorbent is demonstrated, which is important for an application. Thus monoliths and coatings of CAU-10-H are produced using a water-based binder. The composites are thoroughly characterized toward their mechanical stability and water sorption behavior. Finally a full-scale heat exchanger is coated and tested under ADC working conditions. Fast adsorption dynamic leads to a high power output and a good power density. A low regeneration temperature of only 70 °C is demonstrated, allowing the use of low temperature sources like waste heat and solar thermal collectors.

SELECTION OF CITATIONS
SEARCH DETAIL
...