Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 556
Filter
2.
Front Plant Sci ; 15: 1393803, 2024.
Article in English | MEDLINE | ID: mdl-38957608

ABSTRACT

The cultivation of medical cannabis (Cannabis sativa L.) is expanding in controlled environments, driven by evolving governmental regulations for healthcare supply. Increasing inflorescence weight and plant specialized metabolite (PSM) concentrations is critical, alongside maintaining product consistency. Medical cannabis is grown under different spectra and photosynthetic photon flux densities (PPFD), the interaction between spectrum and PPFD on inflorescence weight and PSM attracts attention by both industrialists and scientists. Plants were grown in climate-controlled rooms without solar light, where four spectra were applied: two low-white spectra (7B-20G-73R/Narrow and 6B-19G-75R/2Peaks), and two high-white (15B-42G-43R/Narrow and 17B-40G-43R/Broad) spectra. The low-white spectra differed in red wavelength peaks (100% 660 nm, versus 50:50% of 640:660 nm), the high-white spectra differed in spectrum broadness. All four spectra were applied at 600 and 1200 µmol m-2 s-1. Irrespective of PPFD, white light with a dual red peak of 640 and 660 nm (6B-19G-75R/2Peaks) increased inflorescence weight, compared to white light with a single red peak of 660 nm (7B-20G-73R/Narrow) (tested at P = 0.1); this was associated with higher total plant dry matter production and a more open plant architecture, which likely enhanced light capture. At high PPFD, increasing white fraction and spectrum broadness (17B-40G-43R/Broad) produced similar inflorescence weights compared to white light with a dual red peak of 640 and 660 nm (6B-19G-75R/2Peaks). This was caused by an increase of both plant dry matter production and dry matter partitioning to the inflorescences. No spectrum or PPFD effects on cannabinoid concentrations were observed, although at high PPFD white light with a dual red peak of 640 and 660 nm (6B-19G-75R/2Peaks) increased terpenoid concentrations compared to the other spectra. At low PPFD, the combination of white light with 640 and 660 nm increased photosynthetic efficiency compared with white light with a single red peak of 660nm, indicating potential benefits in light use efficiency and promoting plant dry matter production. These results indicate that the interaction between spectrum and PPFD influences plant dry matter production. Dividing the light energy in the red waveband over both 640 and 660 nm equally shows potential in enhancing photosynthesis and plant dry matter production.

3.
Cells ; 13(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38994974

ABSTRACT

Pediatric high-grade gliomas are a devastating subset of brain tumors, characterized by their aggressive pathophysiology and limited treatment options. Among them, H3 K27-altered diffuse midline gliomas (DMG) of the brainstem stand out due to their distinct molecular features and dismal prognosis. Recent advances in molecular profiling techniques have unveiled the critical role of H3 K27 alterations, particularly a lysine-to-methionine mutation on position 27 (K27M) of the histone H3 tail, in the pathogenesis of DMG. These mutations result in epigenetic dysregulation, which leads to altered chromatin structure and gene expression patterns in DMG tumor cells, ultimately contributing to the aggressive phenotype of DMG. The exploration of targeted therapeutic avenues for DMG has gained momentum in recent years. Therapies, including epigenetic modifiers, kinase inhibitors, and immunotherapies, are under active investigation; these approaches aim to disrupt aberrant signaling cascades and overcome the various mechanisms of therapeutic resistance in DMG. Challenges, including blood-brain barrier penetration and DMG tumor heterogeneity, require innovative approaches to improve drug delivery and personalized treatment strategies. This review aims to provide a comprehensive overview of the evolving understanding of DMG, focusing on the intricate molecular mechanisms driving tumorigenesis/tumor progression and the current landscape of emerging targeted interventions.


Subject(s)
Brain Stem Neoplasms , Glioma , Histones , Humans , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Histones/metabolism , Brain Stem Neoplasms/genetics , Brain Stem Neoplasms/pathology , Brain Stem Neoplasms/metabolism , Brain Stem Neoplasms/therapy , Epigenesis, Genetic , Molecular Targeted Therapy , Mutation/genetics , Animals
4.
Plant Cell Environ ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39011936

ABSTRACT

Understanding photosynthetic acclimation to elevated CO2 (eCO2) is important for predicting plant physiology and optimizing management decisions under global climate change, but is underexplored in important horticultural crops. We grew three crops differing in stomatal density-namely chrysanthemum, tomato, and cucumber-at near-ambient CO2 (450 µmol mol-1) and eCO2 (900 µmol mol-1) for 6 weeks. Steady-state and dynamic photosynthetic and stomatal conductance (gs) responses were quantified by gas exchange measurements. Opening and closure of individual stomata were imaged in situ, using a novel custom-made microscope. The three crop species acclimated to eCO2 with very different strategies: Cucumber (with the highest stomatal density) acclimated to eCO2 mostly via dynamic gs responses, whereas chrysanthemum (with the lowest stomatal density) acclimated to eCO2 mostly via photosynthetic biochemistry. Tomato exhibited acclimation in both photosynthesis and gs kinetics. eCO2 acclimation in individual stomatal pore movement increased rates of pore aperture changes in chrysanthemum, but such acclimation responses resulted in no changes in gs responses. Although eCO2 acclimation occurred in all three crops, photosynthesis under fluctuating irradiance was hardly affected. Our study stresses the importance of quantifying eCO2 acclimatory responses at different integration levels to understand photosynthetic performance under future eCO2 environments.

5.
J Exp Bot ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829698

ABSTRACT

Whether green light promotes or represses plant growth is an unresolved but important question, warranting a global meta-analysis of published data. We collected 136 datasets from 48 publications on 17 crop species, and calculated the green light effect for a range of plant traits. For each trait the effect was calculated as the ratio between the trait value attained under a red/blue background light plus green, divided by the value attained under the background light only, both having the same light intensity. Generally, green light strongly increased intrinsic water use efficiency (15%), the shoot-to-root ratio (13%), and decreased stomatal conductance (-15%). Moreover, green light increased fresh weight to a small extent (4%), but not plant dry weight, resulting in a reduced dry matter content (-2%). Hence, green light is similarly effective at increasing biomass as red and blue light. Green light also showed to increase leaf area (7%) and specific leaf area (4%; i.e., thinner leaves). Furthermore, effects of green light were species-dependent, with positive effects on biomass for lettuce and microgreens, and negative effects in basil and tomato. Our data suggest that future research should focus on the role of green light in modulating water loss, its putative role as a shade signal, and the causes for its species-specific effects on crop biomass.

6.
Physiol Plant ; 176(4): e14410, 2024.
Article in English | MEDLINE | ID: mdl-38945685

ABSTRACT

Maximal sunlight intensity varies diurnally due to the earth's rotation. Whether this slow diurnal pattern influences the photoprotective capacity of plants throughout the day is unknown. We investigated diurnal variation in NPQ, along with NPQ capacity, induction, and relaxation kinetics after transitions to high light, in tomato plants grown under diurnal parabolic (DP) or constant (DC) light intensity regimes. DP light intensity peaked at midday (470 µmol m-2 s-1) while DC stayed constant at 300 µmol m-2 s-1 at a similar 12-hour photoperiod and daily light integral. NPQs were higher in the morning and afternoon at lower light intensities in DP compared to DC, except shortly after dawn. NPQ capacity increased from midday to the end of the day, with higher values in DP than in DC. At high light ΦPSII did not vary throughout the day, while ΦNPQ varied consistently with NPQ capacity. Reduced ΦNO suggested less susceptibility to photodamage at the end of the day. NPQ induction was faster at midday than at the start of the day and in DC than in DP, with overshoot occurring in the morning and midday but not at the end of the day. NPQ relaxation was faster in DP than in DC. The xanthophyll de-epoxidation state and reduced demand for photochemistry could not explain the observed diurnal variations in photoprotective capacity. In conclusion, this study showed diurnal variation in regulated photoprotective capacity at moderate growth light intensity, which was not explained by instantaneous light intensity or increasing photoinhibition over the day and was influenced by acclimation to constant light intensity.


Subject(s)
Circadian Rhythm , Light , Solanum lycopersicum , Solanum lycopersicum/radiation effects , Solanum lycopersicum/physiology , Solanum lycopersicum/metabolism , Circadian Rhythm/physiology , Circadian Rhythm/radiation effects , Photosynthesis/radiation effects , Photosynthesis/physiology , Photoperiod , Xanthophylls/metabolism , Sunlight , Chlorophyll/metabolism , Photosystem II Protein Complex/metabolism , Kinetics , Plant Leaves/radiation effects , Plant Leaves/physiology , Plant Leaves/metabolism
7.
Ann Bot ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946023

ABSTRACT

BACKGROUND AND AIMS: Long-term exposure over several days to Far-Red (FR) increases leaf expansion, while short-term exposure (minutes) may enhance the PSII operating efficiency (ϕPSII). The interaction between these responses at different time scales, and their impact on photosynthesis at whole-plant level is not well understood. Our study aimed to assess the effects of FR in an irradiance mimicking the spectrum of sunlight (referred to as artificial solar irradiance) both in the long and short-term, on whole-plant CO2 assimilation rates and in leaves at different positions in the plant. METHODS: Tomato (Solanum lycopersicum) plants were grown under artificial solar irradiance conditions with either a severely reduced or normal fraction of FR(SUN(FR-) vs. SUN). To elucidate the interplay between the growth light treatment and the short-term reduction of FR, we investigated this interaction at both the whole-plant and leaf level. At whole-plant level, CO2 assimilation rates were assessed under artificial solar irradiance with a normal and a reduced fraction of FR. At the leaf level, the effects of removal and presence of FR (0FR and 60FR) during transition from high to low light on CO2 assimilation rates and chlorophyll fluorescence were evaluated in upper and lower leaves. KEY RESULTS: SUN(FR-) plants had lower leaf area, shorter stems, and darker leaves than SUN plants. While reducing FR during growth did not affect whole-plant photosynthesis under high light intensity, it had a negative impact at low light intensity. Short-term FR removal reduced both plant and leaf CO2 assimilation rates, but only at low light intensity and irrespective of the growth light treatment and leaf position. Interestingly, the kinetics of ϕPSII from high to low light were accelerated by 60FR, with a larger effect in lower leaves of SUN than in SUN(FR-) plants. CONCLUSIONS: Growing plants with a reduced amount of FR light lowers whole-plant CO2 assimilation rates at low light intensity through reduced leaf area, despite maintaining similar leaf-level CO2 assimilation to leaves grown with a normal amount of FR. The short-term removal of FR brings about significant but marginal reductions in photosynthetic efficiency at the leaf level, regardless of the long-term growth light treatment.

8.
Neurosurgery ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904388

ABSTRACT

The emerging field of cancer neuroscience reshapes our understanding of the intricate relationship between the nervous system and cancer biology; this new paradigm is likely to fundamentally change and advance neuro-oncological care. The profound interplay between cancers and the nervous system is reciprocal: Cancer growth can be induced and regulated by the nervous system; conversely, tumors can themselves alter the nervous system. Such crosstalk between cancer cells and the nervous system is evident in both the peripheral and central nervous systems. Recent advances have uncovered numerous direct neuron-cancer interactions at glioma-neuronal synapses, paracrine mechanisms within the tumor microenvironment, and indirect neuroimmune interactions. Neurosurgeons have historically played a central role in neuro-oncological care, and as the field of cancer neuroscience is becoming increasingly established, the role of neurosurgical intervention is becoming clearer. Examples include peripheral denervation procedures, delineation of neuron-glioma networks, development of neuroprostheses, neuromodulatory procedures, and advanced local delivery systems. The present review seeks to highlight key cancer neuroscience mechanisms with neurosurgical implications and outline the future role of neurosurgical intervention in cancer neuroscience.

9.
Neurosurgery ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916340

ABSTRACT

BACKGROUND AND OBJECTIVES: Nearly all neurosurgeons in the United States will be named defendants in a malpractice claim before retirement. We perform an assessment of national malpractice trends in cranial neurosurgery to inform neurosurgeons on current outcomes, trends over time, benchmarks for malpractice coverage needs, and ways to mitigate lawsuits. METHODS: The Westlaw Edge and LexisNexis databases were searched to identify medical malpractice cases relating to open cranial surgery between 1987 and 2023. Extracted data included date of verdict, jurisdiction, outcome, details of sustained injuries, and any associated award/settlement figures. RESULTS: Of 1550 cases analyzed, 252 were identified as malpractice claims arising from open cranial surgery. The median settlement amount was $950 000 and the average plaintiff ruling was $2 750 000. The highest plaintiff ruling resulted in an award of $28.1 million. Linear regression revealed no significant relationship between year and defendant win (P-value = .43). After adjusting for inflation, award value increased with time (P-value = .01). The most common cranial subspecialties were tumor (67 cases, 26.6%), vascular (54 cases, 21.4%), infection (23 cases, 9.1%), and trauma (23 cases, 9.1%). Perioperative complications was the most common litigation category (96 cases, 38.1%), followed by delayed treatment (40 cases, 15.9%), failure to diagnose (38 cases, 15.1%), and incorrect choice of procedure (29 cases, 11.5%). The states with most claims were New York (40 cases, 15.9%), California (24 cases, 9.5%), Florida (21 cases, 8.3%), and Pennsylvania (20 cases, 7.9%). CONCLUSION: Although a stable number of cases were won by neurosurgeons, an increase in award sizes was observed in the 37-year period assessed. Perioperative complications and delayed treatment/diagnosis were key drivers of malpractice claims.

10.
Front Plant Sci ; 15: 1386950, 2024.
Article in English | MEDLINE | ID: mdl-38699540

ABSTRACT

High planting densities achieve high light interception and harvestable yield per area but at the expense of product quality. This study aimed to maintain high light interception without negative impacts on fruit quality. Dwarf tomato was grown at four densities in a climate-controlled room-at two constant densities (high and low) and two dynamic spacing treatments (maintaining 90% and 75% ground coverage by decreasing planting density in 3-4 steps)-resulting in ~100, 19, 54, and 41 plants/m2 averaged over 100 days of cultivation, respectively. Constant high density resulted in the highest light use efficiency (LUE; 7.7 g fruit fresh weight per mol photons incident on the canopy) and the highest harvestable fruit yield (11.1 kg/m2) but the lowest fruit size and quality. Constant low density resulted in the lowest LUE and yield (2.3 g/mol and 3.2 kg/m2, respectively), but higher fruit size and quality than high density. Compared to low density, maintaining 90% ground coverage increased yield (9.1 kg/m2) and LUE (6.4 g/mol). Maintaining 75% ground coverage resulted in a 7.2 kg/m2 yield and 5.1 g/mol LUE. Both dynamic spacing treatments attained the same or slightly reduced fruit quality compared to low density. Total plant weight per m2 increased with planting density and saturated at a constant high density. Assimilate shortage at the plant level and flower abortion lowered harvestable fruit yield per plant, sweetness, and acidity under constant high density. Harvestable fruit yield per plant was the highest under dynamic spacing and low density. Under constant high density, morphological responses to lower light availability per plant-i.e., higher specific leaf area, internode elongation, and increased slenderness-coincided with the improved whole-plant LUE (g plant dry weight per mol photons). We conclude that a constant high planting density results in the highest harvestable fruit yield per area, but with reduced fruit quality. Dynamic spacing during cultivation produces the same fruit quality as constant low density, but with more than double the harvestable yield per area.

11.
Front Plant Sci ; 15: 1383100, 2024.
Article in English | MEDLINE | ID: mdl-38745919

ABSTRACT

In controlled environment agriculture, customized light treatments using light-emitting diodes are crucial to improving crop yield and quality. Red (R; 600-700 nm) and blue light (B; 400-500 nm) are two major parts of photosynthetically active radiation (PAR), often preferred in crop production. Far-red radiation (FR; 700-800 nm), although not part of PAR, can also affect photosynthesis and can have profound effects on a range of morphological and physiological processes. However, interactions between different red and blue light ratios (R:B) and FR on promoting yield and nutritionally relevant compounds in crops remain unknown. Here, lettuce was grown at 200 µmol m-2 s-1 PAR under three different R:B ratios: R:B87.5:12.5 (12.5% blue), R:B75:25 (25% blue), and R:B60:40 (40% blue) without FR. Each treatment was also performed with supplementary FR (50 µmol m-2 s-1; R:B87.5:12.5+FR, R:B75:25+FR, and R:B60:40+FR). White light with and without FR (W and W+FR) were used as control treatments comprising of 72.5% red, 19% green, and 8.5% blue light. Increasing the R:B ratio from R:B87.5:12.5 to R:B60:40, there was a decrease in fresh weight (20%) and carbohydrate concentration (48% reduction in both sugars and starch), whereas pigment concentrations (anthocyanins, chlorophyll, and carotenoids), phenolic compounds, and various minerals all increased. These results contrasted the effects of FR supplementation in the growth spectra; when supplementing FR to different R:B backgrounds, we found a significant increase in plant fresh weight, dry weight, total soluble sugars, and starch. Additionally, FR decreased concentrations of anthocyanins, phenolic compounds, and various minerals. Although blue light and FR effects appear to directly contrast, blue and FR light did not have interactive effects together when considering plant growth, morphology, and nutritional content. Therefore, the individual benefits of increased blue light fraction and supplementary FR radiation can be combined and used cooperatively to produce crops of desired quality: adding FR increases growth and carbohydrate concentration while increasing the blue fraction increases nutritional value.

12.
JAMA Cardiol ; 9(7): 649-658, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38809565

ABSTRACT

Importance: Heart failure (HF) and frailty frequently coexist and may share a common pathobiology, although the underlying mechanisms remain unclear. Understanding these mechanisms may provide guidance for preventing and treating both conditions. Objective: To identify shared pathways between incident HF and frailty in late life using large-scale proteomics. Design, Setting, and Participants: In this cohort study, 4877 aptamers (Somascan v4) were measured among participants in the community-based longitudinal Atherosclerosis Risk In Communities (ARIC) cohort study at visit 3 (V3; 1993-1995; n = 10 638) and at visit 5 (V5; 2011-2013; n = 3908). Analyses were externally replicated among 3189 participants in the Cardiovascular Health Study (CHS). Data analysis was conducted from February 2022 to June 2023. Exposures: Protein aptamers, measured at study V3 and V5. Main Outcomes and Measures: Outcomes assessed included incident HF hospitalization after V3 and after V5, prevalent frailty at V5, and incident frailty between V5 and visit 6 (V6; 2016-2017; n = 4131). Frailty was assessed using the Fried criteria. Analyses were adjusted for age, gender, race, field center, hypertension, diabetes, smoking status, body mass index, estimated glomerular filtration rate, prevalent coronary heart disease, prevalent atrial fibrillation, and history of myocardial infarction. Mendelian randomization (MR) analysis was performed to assess potential causal effects of candidate proteins on HF and frailty. Results: A total of 4877 protein aptamers were measured among 10 638 participants at V3 (mean [SD] age, 60 [6] years; 4886 [46%] men). Overall, 286 proteins were associated with incident HF after V3 (822 events; P < 1.0 × 10-5), 83 of which were also associated with incident after V5 (336 events; P < 1.7 × 10-4). Among HF-free participants at V5 (n = 3908; mean [SD] age, 75 [5] years; 1861 [42%] men), 48 of 83 HF-associated proteins were associated with prevalent frailty (223 cases; P < 6.0 × 10-4), 18 of which were also associated with incident frailty at V6 (152 cases; P < 1.0 × 10-3). These proteins enriched fibrosis and inflammation pathways and demonstrated stronger associations with incident HF with preserved ejection fraction (HFpEF) than HF with reduced ejection fraction. All 18 proteins were associated with both prevalent frailty and incident HF in CHS. MR identified potential causal effects of several proteins on frailty and HF. Conclusions and Relevance: In this study, the proteins associated with risk of HF and frailty enrich for pathways related to inflammation and fibrosis as well as risk of HFpEF. Several of these proteins could potentially contribute to the shared pathophysiology of frailty and HF.


Subject(s)
Frailty , Heart Failure , Proteomics , Humans , Heart Failure/epidemiology , Heart Failure/blood , Female , Male , Aged , Frailty/epidemiology , Frailty/blood , Incidence , Risk Factors , Middle Aged , Biomarkers/blood
13.
Am J Cardiovasc Drugs ; 24(3): 433-444, 2024 May.
Article in English | MEDLINE | ID: mdl-38583107

ABSTRACT

BACKGROUND: Landmark clinical trials have expended the indications for the direct oral anticoagulants (DOACs), but contemporary data on usage and expenditure patterns are lacking. OBJECTIVE: This study aimed to assess annual trends in oral anticoagulant (OAC) utilization and expenditure across the United States (US) from 2014 to 2020. METHODS: We utilized the Medical Expenditure Panel Survey (MEPS) to study the trends of use and expenditures of warfarin, dabigatran, rivaroxaban, apixaban, and edoxaban between 2014 and 2020 in the US. Survey respondents reported OAC use within the past year, which was verified against pharmacy records. Payment information was obtained from the respondent's pharmacy and was categorized as third-party or self/out-of-pocket. Potential indications and medical conditions of interest for OAC therapy were identified from respondent-reported medical conditions. We estimated the national number of OAC users and total expenditures across age, sex, race, ethnicity, insurance, and medical condition subgroups. Trends of OAC users' characteristics, expenditure, and number of prescriptions were evaluated using the Mann-Kendall test for trends. RESULTS: Between 2014 and 2020, the number of warfarin users decreased from 3.8 million (70% of all OAC users) to 2.2 million (p = 0.007) [29% of all OAC users], while the number of DOAC users increased from 1.6 million (30% of all OAC users) to 5.4 million (p = 0.003) [70% of all OAC users]. The total expenditure of OACs in the US increased from $3.4 billion in 2014 to $17.8 billion in 2020 (p = 0.003), which was driven by the increase in DOAC expenditures (p = 0.003). CONCLUSIONS: DOACs have replaced warfarin as the preferred OAC in the US. The increased costs associated with DOAC use may decline when generic formulations are approved.


Subject(s)
Anticoagulants , Health Expenditures , Humans , United States , Anticoagulants/economics , Anticoagulants/therapeutic use , Anticoagulants/administration & dosage , Female , Male , Administration, Oral , Health Expenditures/trends , Health Expenditures/statistics & numerical data , Aged , Middle Aged , Adult , Young Adult , Warfarin/economics , Warfarin/therapeutic use , Warfarin/administration & dosage , Adolescent , Aged, 80 and over
14.
J Thromb Thrombolysis ; 57(4): 598-602, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38554223

ABSTRACT

Moderate-strong CYP3A4 or Pgp inhibitors and inducers alter direct oral anticoagulant (DOAC) pharmacokinetics. Whether the presence of a DOAC drug-drug interaction (DDI) prompts in- hospital changes in management remains unknown. We identified all hospitalized patients at our institution who were admitted with a clinically relevant DOAC DDI from 01/2021 to 06/2021. Clinically relevant DOAC DDIs were defined as those listed in the prescribing information or FDA CYP3A4/Pgp inhibitors clinical indexes. We assessed the prevalence of DOAC DDIs and categorized their management as: drug stopped, drug held, or drug continued. For drugs that were continued we assessed whether the dose of the DOAC or interacting drug was increased, decreased or unchanged during the admission. We ascertained the number of DOAC DDIs that prompted an automated prescribing alert in our electronic health record (EHR). Finally, we conducted a logistic regression model to compare users of DOACs with DDI who had their regimen adjusted versus those without adjustments, focusing on outcomes of rehospitalization and death, adjusting for age and gender. Among 3,725 hospitalizations with a DOAC admission order, 197 (5%) had a clinically relevant DOAC DDI. The DOAC and the interacting drug were continued at discharge for 124 (63%) hospitalizations. The most frequent adjustments were stopping the interacting drug (73%) and stopping the DOAC (15%). Only 7 (4%) of DOAC DDIs prompted an EHR alert. The adjusted odds ratios for rehospitalizations and death, respectively, among patients whose regimens were adjusted compared to those whose were not, were 1.29 (95% CI, 0.67 to 2.48; P = 0.44) and 1.88 (95% CI, 0.91 to 3.89; P = 0.09). Clinically relevant DDIs with DOACs occur infrequently among hospitalized patients and usually are managed without stopping the DOAC. The clinical impact of such DDIs and subsequent adjustments on thrombotic and hemorrhagic outcomes requires further investigation.


Subject(s)
Cytochrome P-450 CYP3A , Hemorrhage , Humans , Drug Interactions , Hemorrhage/drug therapy , Cytochrome P-450 CYP3A Inhibitors , Anticoagulants/therapeutic use , Administration, Oral
15.
J Exp Bot ; 75(10): 2994-3008, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38436737

ABSTRACT

Triose phosphate utilization (TPU) limitation is one of the three biochemical limitations of photosynthetic CO2 assimilation rate in C3 plants. Under TPU limitation, abrupt and large transitions in light intensity cause damped oscillations in photosynthesis. When plants are salt-stressed, photosynthesis is often down-regulated particularly under dynamic light intensity, but how salt stress affects TPU-related dynamic photosynthesis is still unknown. To elucidate this, tomato (Solanum lycopersicum) was grown with and without sodium chloride (NaCl, 100 mM) stress for 13 d. Under high CO2 partial pressure, rapid increases in light intensity caused profound photosynthetic oscillations. Salt stress reduced photosynthetic oscillations in leaves initially under both low- and high-light conditions and reduced the duration of oscillations by about 2 min. Besides, salt stress increased the threshold for CO2 partial pressure at which oscillations occurred. Salt stress increased TPU capacity without affecting Rubisco carboxylation and electron transport capacity, indicating the up-regulation of end-product synthesis capacity in photosynthesis. Thus salt stress may reduce photosynthetic oscillations by decreasing leaf internal CO2 partial pressure and/or increasing TPU capacity. Our results provide new insights into how salt stress modulates dynamic photosynthesis as controlled by CO2 availability and end-product synthesis.


Subject(s)
Photosynthesis , Salt Stress , Solanum lycopersicum , Solanum lycopersicum/physiology , Solanum lycopersicum/metabolism , Solanum lycopersicum/drug effects , Photosynthesis/drug effects , Trioses/metabolism , Plant Leaves/metabolism , Plant Leaves/physiology , Plant Leaves/drug effects , Carbon Dioxide/metabolism , Phosphates/metabolism , Light , Sodium Chloride/pharmacology
16.
Arterioscler Thromb Vasc Biol ; 44(5): 1031-1041, 2024 May.
Article in English | MEDLINE | ID: mdl-38511324

ABSTRACT

Colchicine-an anti-inflammatory alkaloid-has assumed an important role in the management of cardiovascular inflammation ≈3500 years after its first medicinal use in ancient Egypt. Primarily used in high doses for the treatment of acute gout flares during the 20th century, research in the early 21st century demonstrated that low-dose colchicine effectively treats acute gout attacks, lowers the risk of recurrent pericarditis, and can add to secondary prevention of major adverse cardiovascular events. As the first Food and Drug Administration-approved targeted anti-inflammatory cardiovascular therapy, colchicine currently has a unique role in the management of atherosclerotic cardiovascular disease. The safe use of colchicine requires careful monitoring for drug-drug interactions, changes in kidney and liver function, and counseling regarding gastrointestinal upset. Future research should elucidate the mechanisms of anti-inflammatory effects of colchicine relevant to atherosclerosis, the potential role of colchicine in primary prevention, in other cardiometabolic conditions, colchicine's safety in cardiovascular patients, and opportunities for individualizing colchicine therapy using clinical and molecular diagnostics.


Subject(s)
Cardiovascular Diseases , Colchicine , Humans , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/adverse effects , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/prevention & control , Colchicine/therapeutic use , Colchicine/adverse effects , Drug Interactions , Gout Suppressants/therapeutic use , Gout Suppressants/adverse effects , Treatment Outcome
17.
Trends Plant Sci ; 29(5): 572-588, 2024 May.
Article in English | MEDLINE | ID: mdl-38494370

ABSTRACT

In controlled environment agriculture (CEA), light is used to impact terpenoid production and improve plant quality. In this review we discuss various aspects of light as important regulators of terpenoid production in different plant organs. Spectral quality primarily modifies terpenoid profiles, while intensity and photoperiod influence abundances. The central regulator of light signal transduction elongated hypocotyl 5 (HY5) controls transcriptional regulation of terpenoids under UV, red (R), and blue (B) light. The larger the fraction of R and green (G) light, the more beneficial the effect on monoterpenoid and sesquiterpenoid biosynthesis, and such an effect may depend on the presence of B light. A large fraction of R light is mostly detrimental to tetraterpenoid production. We conclude that light is a promising tool to steer terpenoid production and potentially tailor the quality of plants.


Subject(s)
Light , Plants , Terpenes , Gene Expression Regulation, Plant , Plants/metabolism , Terpenes/metabolism
19.
Plant Physiol ; 195(2): 924-939, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38366641

ABSTRACT

Far-red radiation affects many plant processes, including reproductive organ abortion. Our research aimed to determine the role of apical dominance in far-red light-induced flower and fruit abortion in sweet pepper (Capsicum annuum L.). We conducted several climate room experiments where plants were grown under white- or red-rich LED light, with or without additional far-red light. Additional far-red light enhanced apical dominance: it increased auxin levels in the apices of dominant shoots, and caused a greater difference in internode length and apical auxin levels between dominant and subordinate shoots. Additional far-red light stimulated fruit abortion in intact plants but not in decapitated plants, suggesting a crucial role of shoot apices in this effect. However, reducing basipetal auxin transport in the stems with N-1-naphthylphthalamic acid did not influence far-red light-stimulated fruit abortion, although auxin levels in the stem were largely reduced. Applying the synthetic auxin 1-naphthaleneacetic acid on decapitated apices did not influence fruit abortion. However, applying the auxin biosynthesis inhibitor yucasin to shoot apices reduced fruit abortion regardless of the light conditions, accompanied by slight shoot growth retardation. These findings suggest that the basipetal auxin stream does not mediate far-red light-stimulated fruit abortion. Far-red light-stimulated fruit abortion was associated with reduced sucrose accumulation and lower invertase activities in flowers. We suggest that under additional far-red light conditions, increased auxin levels in shoot apices promote fruit abortion probably through enhanced competition for assimilates between apices and flowers, which limits assimilate import into flowers.


Subject(s)
Capsicum , Flowers , Fruit , Indoleacetic Acids , Light , Capsicum/growth & development , Capsicum/physiology , Capsicum/radiation effects , Capsicum/metabolism , Flowers/physiology , Flowers/growth & development , Flowers/radiation effects , Fruit/growth & development , Fruit/metabolism , Fruit/radiation effects , Fruit/physiology , Indoleacetic Acids/metabolism , Red Light
20.
Nat Commun ; 15(1): 528, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225249

ABSTRACT

Heart failure (HF) causes substantial morbidity and mortality but its pathobiology is incompletely understood. The proteome is a promising intermediate phenotype for discovery of novel mechanisms. We measured 4877 plasma proteins in 13,900 HF-free individuals across three analysis sets with diverse age, geography, and HF ascertainment to identify circulating proteins and protein networks associated with HF development. Parallel analyses in Atherosclerosis Risk in Communities study participants in mid-life and late-life and in Trøndelag Health Study participants identified 37 proteins consistently associated with incident HF independent of traditional risk factors. Mendelian randomization supported causal effects of 10 on HF, HF risk factors, or left ventricular size and function, including matricellular (e.g. SPON1, MFAP4), senescence-associated (FSTL3, IGFBP7), and inflammatory (SVEP1, CCL15, ITIH3) proteins. Protein co-regulation network analyses identified 5 modules associated with HF risk, two of which were influenced by genetic variants that implicated trans hotspots within the VTN and CFH genes.


Subject(s)
Atherosclerosis , Heart Failure , Humans , Proteomics , Risk Factors , Phenotype , Carrier Proteins/genetics , Glycoproteins/genetics , Extracellular Matrix Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...