Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters











Publication year range
1.
Microorganisms ; 10(6)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35744689

ABSTRACT

Pil-fimbriae is a type IV pili member, which is a remarkably versatile component with a wide variety of functions, including motility, attachment to different surfaces, electrical conductance, DNA acquisition, and secretion of a broad range of structurally distinct protein substrates. Despite the previous functional characterization of Pil, more studies are required to understand the regulation of Pil expression and production, since the exact mechanisms involved in these steps are still unknown. Therefore it is extremely important to have a protein with the correct secondary and tertiary structure that will enable an accurate characterization and a specific antisera generation. For this reason, the aim of this work was to generate potential tools for further investigations to comprehend the mechanisms involved in Pil regulation and its role in pathogenic E. coli infections with the obtaining of a precise native-like recombinant PilS and the corresponding antisera. The pilS gene was successfully cloned into an expression vector, and recombinant PilS (rPilS) was efficiently solubilized and purified by metal affinity chromatography. Protein characterization analyses indicated that rPilS presented native-like secondary and tertiary structures after the refolding process. The generated anti-rPilS sera efficiently recognized recombinant and native proteins from atypical enteropathogenic E. coli strains.

2.
Front Microbiol ; 11: 1184, 2020.
Article in English | MEDLINE | ID: mdl-32582109

ABSTRACT

The fungi Paracoccidioides brasiliensis and Paracoccidioides lutzii are the causative agents of paracoccidioidomycosis (PCM), a systemic mycosis endemic to Latin America. This fungus is considered a facultative intracellular pathogen that is able to survive and replicate inside macrophages. The survival of the fungus during infection depends on its adaptability to various conditions, such as nitrosative/oxidative stress produced by the host immune cells, particularly alveolar macrophages. Currently, there is little knowledge about the Paracoccidioides spp. signaling pathways involved in the fungus evasion mechanism of the host defense response. However, it is known that some of these pathways are triggered by reactive oxygen species and reactive nitrogen species (ROS/RNS) produced by host cells. Considering that the effects of NO (nitric oxide) on pathogens are concentration dependent, such effects could alter the redox state of cysteine residues by influencing (activating or inhibiting) a variety of protein functions, notably S-nitrosylation, a highly important NO-dependent posttranslational modification that regulates cellular functions and signaling pathways. It has been demonstrated by our group that P. brasiliensis yeast cells proliferate when exposed to low NO concentrations. Thus, this work investigated the modulation profile of S-nitrosylated proteins of P. brasiliensis, as well as identifying S-nitrosylation sites after treatment with RNS. Through mass spectrometry analysis (LC-MS/MS) and label-free quantification, it was possible to identify 474 proteins in the S-nitrosylated proteome study. With this approach, we observed that proteins treated with NO at low concentrations presented a proliferative response pattern, with several proteins involved in cellular cycle regulation and growth being activated. These proteins appear to play important roles in fungal virulence. On the other hand, fungus stimulated by high NO concentrations exhibited a survival response pattern. Among these S-nitrosylated proteins we identified several potential molecular targets for fungal disease therapy, including cell wall integrity (CWI) pathway, amino acid and folic acid metabolisms. In addition, we detected that the transnitrosylation/denitrosylation redox signaling are preserved in this fungus. Finally, this work may help to uncover the beneficial and antifungal properties of NO in the P. brasiliensis and point to useful targets for the development of antifungal drugs.

3.
Mol Nutr Food Res ; 64(7): e1900833, 2020 04.
Article in English | MEDLINE | ID: mdl-31978277

ABSTRACT

SCOPE: Glucose homeostasis and progression of nonalcoholic fatty liver disease (NAFLD) and hepatomegaly in severe lipoatrophic mice and their modulation by intake of a diet rich in omega 3 (n-3) fatty acids (HFO) are evaluated. METHODS AND RESULTS: Severe lipoatrophic mice induced by PPAR-γ deletion exclusively in adipocytes (A-PPARγ KO) and littermate controls (A-PPARγ WT) are evaluated for glucose homeostasis and liver mass, proteomics, lipidomics, inflammation, and fibrosis. Lipoatrophic mice are heavier than controls, severely glucose intolerant, and hyperinsulinemic, and develop NAFLD characterized by increased liver glycogen, triacylglycerol, and diacylglycerol contents, mitotic index, apoptosis, inflammation, steatosis score, fibrosis, and fatty acid synthase (FAS) content and activity. Lipoatrophic mice also display liver enrichment with monounsaturated in detriment of polyunsaturated fatty acids including n-3 fatty acids, and increased content of cardiolipin, a tetracyl phospholipid exclusively found at the mitochondria inner membrane. Administration of a high-fat diet rich in n-3 fatty acids (HFO) to lipoatrophic mice enriches liver with n-3 fatty acids, reduces hepatic steatosis, FAS content and activity, apoptosis, inflammation, and improves glucose homeostasis. CONCLUSION: Diet enrichment with n-3 fatty acids improves glucose homeostasis and reduces liver steatosis and inflammation without affecting hepatomegaly in severe lipoatrophic mice.


Subject(s)
Fatty Acids, Omega-3/pharmacology , Insulin Resistance , Lipodystrophy/complications , Non-alcoholic Fatty Liver Disease/diet therapy , Adipocytes/metabolism , Animals , Diet, High-Fat , Glucose/metabolism , Homeostasis/drug effects , Male , Mice, Knockout , Mice, Transgenic , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , PPAR gamma/genetics
4.
J Proteome Res ; 18(10): 3597-3614, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31478661

ABSTRACT

Cdc42, a member of the Rho GTPase family, is an intracellular signaling protein known for its roles in cytoskeleton rearrangements and, more recently, in apoptosis/senescence triggered by genotoxic stress. In some tumor cells, the overactivation of Cdc42 through the expression of constitutively active mutants (G12V or Q61L), GEF activation, or GAP downregulation functions as an antiproliferative or pro-aging mechanism. In this study, human cell lines with different P53 protein profiles were exposed to UV radiation, and the interactions between Cdc42 and proteins that are putatively involved in the DNA damage response and repair mechanisms were screened. The affinity-purified proteins obtained through pull-down experiments of the cell lysates using the recombinant protein baits GST, GST-Cdc42-WT, or GST-Cdc42-G12V were identified by mass spectrometry. The resulting data were filtered and used for the construction of protein-protein interaction networks. Among several promising proteins, three targets, namely, PAK4, PHB-2, and 14-3-3η, which are involved in the cell cycle, apoptosis, DNA repair, and chromatin remodeling processes, were identified. Biochemical validation experiments showed physical and proximal interactions between Cdc42 and the three targets in the cells, particularly after exposure to UV. The results suggest that the molecular mechanisms coordinated by overactivated Cdc42 (with the G12V mutation) to increase the cellular sensitivity to UV radiation and the susceptibility to cell death are collectively mediated by these three proteins. Therefore, the Cdc42 GTPase can potentially be considered another player involved in maintenance of the genomic stability of human cells during exposure to genotoxic stress.


Subject(s)
14-3-3 Proteins/metabolism , Genomic Instability , Proteomics/methods , Repressor Proteins/metabolism , cdc42 GTP-Binding Protein/metabolism , p21-Activated Kinases/metabolism , Cell Death/radiation effects , Cell Line , DNA Repair , Humans , Mutation, Missense , Prohibitins , Protein Interaction Mapping , Tumor Suppressor Protein p53/analysis , Ultraviolet Rays/adverse effects , cdc42 GTP-Binding Protein/genetics
5.
Biomolecules ; 9(8)2019 08 19.
Article in English | MEDLINE | ID: mdl-31431000

ABSTRACT

Thimet oligopeptidase (THOP1) is thought to be involved in neuropeptide metabolism, antigen presentation, neurodegeneration, and cancer. Herein, the generation of THOP1 C57BL/6 knockout mice (THOP1-/-) is described showing that they are viable, have estrus cycle, fertility, and a number of puppies per litter similar to C57BL/6 wild type mice (WT). In specific brain regions, THOP1-/- exhibit altered mRNA expression of proteasome beta5, serotonin 5HT2a receptor and dopamine D2 receptor, but not of neurolysin (NLN). Peptidomic analysis identifies differences in intracellular peptide ratios between THOP1-/- and WT mice, which may affect normal cellular functioning. In an experimental model of multiple sclerosis THOP1-/- mice present worse clinical behavior scores compared to WT mice, corroborating its possible involvement in neurodegenerative diseases. THOP1-/- mice also exhibit better survival and improved behavior in a sepsis model, but also a greater peripheral pain sensitivity measured in the hot plate test after bradykinin administration in the paw. THOP1-/- mice show depressive-like behavior, as well as attention and memory retention deficits. Altogether, these results reveal a role of THOP1 on specific behaviors, immune-stimulated neurodegeneration, and infection-induced inflammation.


Subject(s)
Metalloendopeptidases/metabolism , Animals , Behavior, Animal , Female , Male , Metalloendopeptidases/deficiency , Metalloendopeptidases/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype
6.
Sci Rep ; 9(1): 2888, 2019 02 27.
Article in English | MEDLINE | ID: mdl-30814563

ABSTRACT

DNA polymerase theta (Polθ), a member of the DNA polymerase family A, exhibits a polymerase C-terminal domain, a central domain, and an N-terminal helicase domain. Polθ plays important roles in DNA repair via its polymerase domain, regulating genome integrity. In addition, in mammals, Polθ modulates origin firing timing and MCM helicase recruitment to chromatin. In contrast, as a model eukaryote, Trypanosoma cruzi exhibits two individual putative orthologs of Polθ in different genomic loci; one ortholog is homologous to the Polθ C-terminal polymerase domain, and the other is homologous to the Polθ helicase domain, called Polθ-polymerase and Polθ-helicase, respectively. A pull-down assay using the T. cruzi component of the prereplication complex Orc1/Cdc6 as bait captured Polθ-helicase from the nuclear extract. Orc1/Cdc6 and Polθ-helicase directly interacted, and Polθ-helicase presented DNA unwinding and ATPase activities. A T. cruzi strain overexpressing the Polθ-helicase domain exhibited a significantly decreased amount of DNA-bound MCM7 and impaired replication origin firing. Taken together, these data suggest that Polθ-helicase modulates DNA replication by directly interacting with Orc1/Cdc6, which reduces the binding of MCM7 to DNA and thereby impairs the firing of replication origins.


Subject(s)
Chromatin/metabolism , DNA Helicases/metabolism , DNA Replication , DNA-Directed DNA Polymerase/metabolism , Origin Recognition Complex/metabolism , Protozoan Proteins/metabolism , Trypanosoma cruzi/growth & development , Chromatin/genetics , DNA Helicases/genetics , DNA-Directed DNA Polymerase/genetics , Humans , Origin Recognition Complex/genetics , Protozoan Proteins/genetics , Replication Origin , Trypanosoma cruzi/genetics , Trypanosoma cruzi/metabolism , DNA Polymerase theta
7.
J Cell Biochem ; 120(4): 6015-6025, 2019 04.
Article in English | MEDLINE | ID: mdl-30320934

ABSTRACT

Ribosomal S6 kinase 1 (S6K1) and S6K2 proteins are effectors of the mammalian target of rapamycin complex 1 pathway, which control the process of protein synthesis in eukaryotes. S6K2 is associated with tumor progression and has a conserved C-terminus polyproline rich motif predicted to be important for S6K2 interactions. It is noteworthy that the translation of proteins containing sequential prolines has been proposed to be dependent of eukaryotic translation initiation factor 5A (eIF5A) translation factor. Therefore, we investigated the importance of polyproline-rich region of the S6K2 for its intrinsic phosphorylation activity, protein-protein interaction and eIF5A role in S6K2 translation. In HeLa cell line, replacing S6K2 polyproline by the homologous S6K1-sequence did not affect its kinase activity and the S6K2 endogenous content was maintained after eIF5A gene silencing, even after near complete depletion of eIF5A protein. Moreover, no changes in S6K2 transcript content was observed, ruling out the possibility of compensatory regulation by increasing the mRNA content. However, in the budding yeast model, we observed that S6K2 production was impaired when compared with S6K2∆Pro, after reduction of eIF5A protein content. These results suggest that although the polyproline region of S6K2 is capable of generating ribosomal stalling, the depletion of eIF5A in HeLa cells seems to be insufficient to cause an expressive decrease in the content of endogenous S6K2. Finally, coimmunoprecipitation assays revealed that the replacement of the polyproline motif of S6K2 alters its interactome and impairs its interaction with RPS6, a key modulator of ribosome activity. These results evidence the importance of S6K2 polyproline motif in the context of S6Ks function.


Subject(s)
Peptide Initiation Factors/chemistry , Peptide Initiation Factors/metabolism , Peptides/chemistry , Protein Isoforms/chemistry , Protein Isoforms/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Ribosomal Protein S6 Kinases/metabolism , Gene Silencing , HeLa Cells , Humans , Immunoprecipitation , Mass Spectrometry , Peptide Initiation Factors/genetics , Phosphorylation , Polymerase Chain Reaction , Protein Binding , Protein Isoforms/genetics , RNA-Binding Proteins/genetics , Ribosomal Protein S6 Kinases/genetics , Ribosomal Protein S6 Kinases, 70-kDa/genetics , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Eukaryotic Translation Initiation Factor 5A
8.
PLoS Negl Trop Dis ; 11(1): e0005250, 2017 01.
Article in English | MEDLINE | ID: mdl-28045899

ABSTRACT

The larva of cestodes belonging to the Echinococcus granulosus sensu lato (s.l.) complex causes cystic echinococcosis (CE). It is a globally distributed zoonosis with significant economic and public health impact. The most immunogenic and specific Echinococcus-genus antigen for human CE diagnosis is antigen B (AgB), an abundant lipoprotein of the hydatid cyst fluid (HF). The AgB protein moiety (apolipoprotein) is encoded by five genes (AgB1-AgB5), which generate mature 8 kDa proteins (AgB8/1-AgB8/5). These genes seem to be differentially expressed among Echinococcus species. Since AgB immunogenicity lies on its protein moiety, differences in AgB expression within E. granulosus s.l. complex might have diagnostic and epidemiological relevance for discriminating the contribution of distinct species to human CE. Interestingly, AgB2 was proposed as a pseudogene in E. canadensis, which is the second most common cause of human CE, but proteomic studies for verifying it have not been performed yet. Herein, we analysed the protein and lipid composition of AgB obtained from fertile HF of swine origin (E. canadensis G7 genotype). AgB apolipoproteins were identified and quantified using mass spectrometry tools. Results showed that AgB8/1 was the major protein component, representing 71% of total AgB apolipoproteins, followed by AgB8/4 (15.5%), AgB8/3 (13.2%) and AgB8/5 (0.3%). AgB8/2 was not detected. As a methodological control, a parallel analysis detected all AgB apolipoproteins in bovine fertile HF (G1/3/5 genotypes). Overall, E. canadensis AgB comprised mostly AgB8/1 together with a heterogeneous mixture of lipids, and AgB8/2 was not detected despite using high sensitivity proteomic techniques. This endorses genomic data supporting that AgB2 behaves as a pseudogene in G7 genotype. Since recombinant AgB8/2 has been found to be diagnostically valuable for human CE, our findings indicate that its use as antigen in immunoassays could contribute to false negative results in areas where E. canadensis circulates. Furthermore, the presence of anti-AgB8/2 antibodies in serum may represent a useful parameter to rule out E. canadensis infection when human CE is diagnosed.


Subject(s)
Echinococcosis/veterinary , Echinococcus/chemistry , Helminth Proteins/chemistry , Lipoproteins/chemistry , Swine Diseases/parasitology , Animals , Echinococcosis/parasitology , Echinococcus/genetics , Echinococcus/immunology , Echinococcus/isolation & purification , Electrophoresis, Gel, Two-Dimensional , Genotype , Helminth Proteins/genetics , Helminth Proteins/immunology , Lipoproteins/genetics , Lipoproteins/immunology , Mass Spectrometry , Proteomics , Swine
9.
J Proteomics ; 151: 24-32, 2017 01 16.
Article in English | MEDLINE | ID: mdl-27371349

ABSTRACT

Protein degradation by the proteasome generates functional intracellular peptides. Pep5, a peptide derived from Cyclin D2, induces cell death in tumor cell lines and reduces the volume of rat C6 glioblastoma tumors in vivo. Here, we chose the human MDA-MB-231 breast cancer cells to evaluate the mechanism of cell death induced by pep5 in different phases of the cell cycle. Fluorescently labeled pep5, monitored by real time confocal microscopy, entered the MDA-MB-231 cells 3min after application and localized to the nucleus and cytoplasm. Pep5-induced cell death was increased when the MDA-MB-231 cell population was arrested at the G1/S transition or in S phase compared to asynchronous cells. Pep5 induced permanent extracellular signal-regulated kinase (ERK1/2) phosphorylation in MDA-MB-231 cells synchronized in G1/S or S phase. Affinity chromatography followed by mass spectrometry identified CLIC1 and Plectin as the only two proteins that interacted with pep5 in both asynchronous and synchronized MDA-MB-231 cells. These interactions could explain the long-lasting ERK1/2 phosphorylation and the cytoskeleton perturbations in the MDA-MB-231 cells, in which the stress fibers' integrity is affected by pep5 treatments. These data suggest that pep5 has potential therapeutic properties for treating specific types of cancers, such as breast cancer cells. BIOLOGICAL SIGNIFICANCE: Pep5, a natural intracellular peptide formed by the degradation of Cyclin D2 through the ubiquitin-proteasome system, induces cell death when reintroduced into MDA-MB-231 breast cancer cells, which express low levels of Cyclin D2, specifically in G1/S arrested cells or in cells that are passing through S phase. Under these conditions, pep5 is able to interact with different intracellular proteins, primarily cytoskeleton and proteasome components, which can lead to cellular apoptosis. Together, our data suggest that pep5 is an intracellular peptide with therapeutic potential for treating specific types of tumors with low expression of Cyclin D2 by inhibiting cell proliferation.


Subject(s)
Apoptosis/drug effects , Breast Neoplasms/drug therapy , Cell Cycle/drug effects , Cyclin D2/chemistry , MAP Kinase Signaling System/drug effects , Peptide Fragments/pharmacology , Breast Neoplasms/pathology , Cell Line, Tumor , Chloride Channels/metabolism , Cytoskeleton/pathology , Female , Humans , Peptide Fragments/metabolism , Phosphorylation , Plectin/metabolism
10.
Biochim Biophys Acta ; 1864(10): 1428-35, 2016 10.
Article in English | MEDLINE | ID: mdl-27479486

ABSTRACT

BACKGROUND: Cancer has long been associated with thrombosis and many of the standard chemotherapeutics used to treat cancer are pro-thrombotic. Thus, the identification of novel selective anticancer drugs that also have antithrombotic properties is of enormous significance. Amblyomin-X is an anticancer protein derived from the salivary glands of the Amblyomma cajennense tick. METHODS: In this work, we determined the inhibition profile of Amblyomin-X and its effect on activated partial thromboplastin time (aPTT) and prothrombin time (PT), using various approaches such as, kinetic analyses, amidolytic assays, SDS-PAGE, and mass spectrometry. RESULTS: Amblyomin-X inhibited factor Xa, prothrombinase and tenase activities. It was hydrolyzed by trypsin and plasmin. MS/MS data of tryptic hydrolysate of Amblyomin-X suggested the presence of Cys(8)-Cys(59) and Cys(19)-Cys(42) but not Cys(34)-Cys(55) disulfide bond. Instead of Cys(34)-Cys(55), two noncanonical Cys(34)-Cys(74) and Cys(55)-Cys(74) disulfide bonds were identified. Furthermore, when Amblyomin-X (1mg/kg) injected in rabbits, it prolonged aPTT and PT. CONCLUSION: Amblyomin-X is a noncompetitive inhibitor (Ki=3.9µM) of factor Xa. It is a substrate for plasmin and trypsin, but not for factor Xa and thrombin. The disulfide Cys(34)-Cys(55) bond probably scrambles with interchain seventh free cysteine residues (Cys(74)) of Amblyomin-X. The prolongation of PT and aPTT is reversible. GENERAL SIGNIFICANCE: In term of anticoagulant property, this is structural and functional characterization of Amblyomin-X. All together, these results and previous findings suggest that Amblyomin-X has a potential to become an anticancer drug with antithrombotic property.


Subject(s)
Anticoagulants/pharmacology , Blood Coagulation/drug effects , Factor Xa Inhibitors/pharmacology , Factor Xa/metabolism , Salivary Proteins and Peptides/pharmacology , Animals , Antineoplastic Agents/pharmacology , Arthropod Proteins , Blood Coagulation Tests/methods , Humans , Male , Protein Domains , Prothrombin Time/methods , Rabbits , Salivary Glands/metabolism , Salivary Proteins and Peptides/metabolism , Thrombin/metabolism , Thromboplastin/metabolism , Thrombosis/diet therapy , Ticks/metabolism
11.
Parasit Vectors ; 9: 69, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26846700

ABSTRACT

BACKGROUND: Antigen B (EgAgB) is an abundant lipoprotein released by the larva of the cestode Echinococcus granulosus into the host tissues. Its protein moiety belongs to the cestode-specific family known as hydrophobic ligand binding protein (HLBP), and is encoded by five gene subfamilies (EgAgB8/1-EgAgB8/5). The functions of EgAgB in parasite biology remain unclear. It may play a role in the parasite's lipid metabolism since it carries host lipids that E. granulosus is unable to synthesise. On the other hand, there is evidence supporting immuno-modulating activities in EgAgB, particularly on innate immune cells. Both hypothetical functions might involve EgAgB interactions with monocytes and macrophages, which have not been formally analysed yet. METHODS: EgAgB binding to monocytes and macrophages was studied by flow cytometry using inflammation-recruited peritoneal cells and the THP-1 cell line. Involvement of the protein and phospholipid moieties in EgAgB binding to cells was analysed employing lipid-free recombinant EgAgB subunits and phospholipase D treated-EgAgB (lacking the polar head of phospholipids). Competition binding assays with plasma lipoproteins and ligands for lipoprotein receptors were performed to gain information about the putative EgAgB receptor(s) in these cells. Arginase-I induction and PMA/LPS-triggered IL-1ß, TNF-α and IL-10 secretion were examined to investigate the outcome of EgAgB binding on macrophage response. RESULTS: Monocytes and macrophages bound native EgAgB specifically; this binding was also found with lipid-free rEgAgB8/1 and rEgAgB8/3, but not rEgAgB8/2 subunits. EgAgB phospholipase D-treatment, but not the competition with phospholipid vesicles, caused a strong inhibition of EgAgB binding activity, suggesting an indirect contribution of phospholipids to EgAgB-cell interaction. Furthermore, competition binding assays indicated that this interaction may involve receptors with affinity for plasma lipoproteins. At functional level, the exposure of macrophages to EgAgB induced a very modest arginase-I response and inhibited PMA/LPS-mediated IL-1ß and TNF-α secretion in an IL-10-independent manner. CONCLUSION: EgAgB and, particularly its predominant EgAgB8/1 apolipoprotein, are potential ligands for monocyte and macrophage receptors. These receptors may also be involved in plasma lipoprotein recognition and induce an anti-inflammatory phenotype in macrophages upon recognition of EgAgB.


Subject(s)
Echinococcus granulosus/immunology , Immunologic Factors/metabolism , Inflammation/pathology , Lipoproteins/metabolism , Macrophages/immunology , Monocytes/immunology , Animals , Cells, Cultured , Flow Cytometry , Humans , Macrophages/metabolism , Mice, Inbred C57BL , Monocytes/metabolism , Phospholipids/metabolism , Protein Binding
12.
Drug Discov Today ; 21(2): 264-77, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26484434

ABSTRACT

Proteomics has emerged as an invaluable tool in the quest to unravel the biochemical changes that give rise to the hallmarks of cancer. In this review, we present the advances and challenges facing proteomics technology as applied to cancer research, and address how the information gathered so far has helped to enhance understanding of the mechanisms underlying the disease and contributed to the discovery of biomarkers and new drug targets. We conclude by presenting a perspective on how proteomics could be applied in the future to determine prognostic biomarkers and direct strategies for effective cancer treatment.


Subject(s)
Drug Discovery , Neoplasms/metabolism , Proteomics , Animals , Biomarkers, Tumor/metabolism , Humans , Neoplasms/drug therapy , Protein Interaction Mapping
13.
Mycopathologia ; 165(4-5): 341-52, 2008.
Article in English | MEDLINE | ID: mdl-18777638

ABSTRACT

Chemotherapy is the basis of treatment of paracoccidioidomycosis in its various forms. Depending on the Paracoccidioides brasiliensis virulence, the status of host immunity, the degree of tissue involvement and fungal dissemination, treatment can be extended for long periods with an alarming frequency of relapses. Association of chemotherapy with a vaccine to boost the cellular immune response seemed a relevant project not only to reduce the time of treatment but also to prevent relapses and improve the prognosis of anergic cases. The candidate immunogen is the gp43 major diagnostic antigen of P. brasiliensis and more specifically its derived peptide P10, carrying the CD4+ T-cell epitope. Both gp43 and P10 protected Balb/c mice against intratracheal infections with virulent P. brasiliensis strain. P10 as single peptide or in a multiple-antigen-peptide (MAP) tetravalent construction was protective without adjuvant either by preimmunization and intratracheal challenge or as a therapeutic agent in mice with installed infection. P10 showed additive protective effects in drug-treated mice stimulating a Th-1 type immune response with high IFN-gamma and IL-12. P10 and few other peptides in the gp43 were selected by Tepitope algorithm and actually shown to promiscuously bind several prominent HLA-DR molecules suggesting that a peptide vaccine could be devised for a genetically heterogenous population. P10 was protective in animals turned anergic, was effective in a DNA minigene vaccine, and increased the protection by monoclonal antibodies in Balb/c mice. DNA vaccines and peptide vaccines are promising therapeutic tools to be explored in the control of systemic mycoses.


Subject(s)
Adjuvants, Immunologic/therapeutic use , Antifungal Agents/therapeutic use , Antigens, Fungal/immunology , Fungal Proteins/immunology , Fungal Vaccines , Glycoproteins/immunology , Paracoccidioides/immunology , Paracoccidioidomycosis/prevention & control , Peptides , Amino Acid Sequence , Animals , Antigens, Fungal/chemistry , Combined Modality Therapy , Fungal Proteins/chemistry , Fungal Vaccines/administration & dosage , Fungal Vaccines/chemical synthesis , Fungal Vaccines/chemistry , Fungal Vaccines/immunology , Glycoproteins/chemistry , Humans , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Paracoccidioidomycosis/microbiology , Peptides/administration & dosage , Peptides/chemical synthesis , Peptides/chemistry , Peptides/immunology , Treatment Outcome , Vaccination
14.
Cell Stress Chaperones ; 12(2): 112-22, 2007.
Article in English | MEDLINE | ID: mdl-17688190

ABSTRACT

Heat shock proteins (Hsp) are families of highly conserved molecules and immunodominant antigens in some infections and in autoimmune diseases. Some reports suggest that different regions of the Hsp60 molecule induce distinct immune responses. However, there are no reports comparing physiological T-cell reactivity to Hsp60 in mice. In this study, we have analyzed T-cell proliferation and cytokine production induced by Hsp60, under physiological conditions, in three mouse strains bearing distinct major histocompatibility complex (MHC) backgrounds. Proliferative response predominantly was found in C57BL/6 mice, mostly induced by N-terminal and intermediate Hsp60 peptides (P < 0.0001). Interferon-gamma (IFNgamma) production was broadly induced by different regions of Hsp60 in all three mouse strains, although response was focused in different peptide groups in each strain. We did not observe an exclusive Th1 or Th2 cytokine profile induced by any particular region of Hsp60. However, we identified a strain hierarchy in IL-10 production induced by Hsp60 peptides from different regions, mostly detected in C3H/HePas, and in BALB/c, but not in C57BL/6 mice. In contrast, IL-4 production only was induced by the intermediate and C-terminal region peptides in both C3H/HePas and BALB/c mice. Our data give original information on physiological cellular reactivity to Hsp60. We also have identified peptides with the capacity to induce the production of anti-inflammatory cytokines, bringing perspectives for their use in immunotherapy of chronic inflammatory diseases and allograft rejection.


Subject(s)
Chaperonin 60/pharmacology , Amino Acid Sequence , Animals , Antigens , Cell Proliferation/drug effects , Chaperonin 60/chemistry , Humans , Interferon-gamma/biosynthesis , Interleukin-10/biosynthesis , Interleukin-4/biosynthesis , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Inbred Strains , Molecular Sequence Data , Peptides/chemistry , Peptides/pharmacology , Spleen/cytology , Spleen/drug effects
15.
Microbes Infect ; 8(8): 2130-7, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16797207

ABSTRACT

One of the most promising vaccine candidates against the erythrocytic forms of malaria is the 19 kDa C-terminal region of the merozoite surface protein 1 (MSP1(19)). As part of our studies aimed at the development of a Plasmodium vivax malaria vaccine, we characterized the immunogenic properties of a new bacterial recombinant protein containing the P. vivax MSP1(19) and two helper T-cell epitopes, the synthetic universal pan allelic DR epitope (PADRE) and a new internal MSP1 P. vivax epitope (DYDVVYLKPLAGMYK). We found that the recognition of His6MSP1(19)-DYDVVYLKPLAGMYK-PADRE was as good as the recognition of His6MSP1(19) indicating that the presence of the T-cell epitopes PADRE and DYDVVYLKPLAGMYK did not modify the MSP1(19) epitopes recognized by human IgG. The recombinant protein His6MSP1(19)-DYDVVYLKPLAGMYK-PADRE proved to be highly immunogenic in marmosets (Callithrix jacchus jacchus) when administered in incomplete Freund's adjuvant. However, when administered in other adjuvant formulations such as Quil A, CpG ODN 2006 or MPL/TDM, antibody titers to MSP1(19) were significantly lower. Among these three adjuvants, Quil A proved to be the most efficient one generating antibody titers significantly higher than the others. These results indicated that under the circumstances evaluated, adjuvants were key for the immunogenicity of the recombinant protein His6MSP1(19)-DYDVVYLKPLAGMYK-PADRE.


Subject(s)
Antibodies, Protozoan/blood , CD4-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Malaria Vaccines/immunology , Merozoite Surface Protein 1/immunology , Plasmodium vivax/immunology , Adjuvants, Immunologic , Animals , Callithrix , Freund's Adjuvant , Malaria/immunology , Mice , Oligodeoxyribonucleotides/immunology , Quillaja Saponins , Saponins/immunology , T-Lymphocytes, Helper-Inducer/immunology , Vaccines, Synthetic/immunology
16.
Microbes Infect ; 7(11-12): 1184-95, 2005.
Article in English | MEDLINE | ID: mdl-15951215

ABSTRACT

Proteins containing tandemly repetitive sequences are present in several immunodominant protein antigens in pathogenic protozoan parasites. The tandemly repetitive Trypanosoma cruzi B13 protein is recognized by IgG antibodies from 98% of Chagas' disease patients. Little is known about the molecular mechanisms that lead to the immunodominance of the repeated sequences, and there is limited information on T cell epitopes in such repetitive antigens. We finely characterized the T cell recognition of the tandemly repetitive, degenerate B13 protein by T cell lines, clones and PBMC from Chagas' disease cardiomyopathy (CCC), asymptomatic T. cruzi infected (ASY) and non-infected individuals (N). PBMC proliferative responses to recombinant B13 protein were restricted to individuals bearing HLA-DQA1*0501(DQ7), -DR1, and -DR2; B13 peptides bound to the same HLA molecules in binding assays. The HLA-DQ7-restricted minimal T cell epitope [FGQAAAG(D/E)KP] was identified with an overlapping combinatorial peptide library including all B13 sequence variants in T. cruzi Y strain B13 protein; the underlined small residues GQA were the major HLA contact residues. Among natural B13 15-mer variant peptides, molecular modeling showed that several variant positions were solvent (TCR)-exposed, and substitutions at exposed positions abolished recognition. While natural B13 variant peptide S15.9 seems to be the immunodominant epitope for Chagas' disease patients, S15.4 was preferentially recognized by CCC rather than ASY patients, which may be pathogenically relevant. This is the first thorough characterization of T cell epitopes of a tandemly repetitive protozoan antigen and may suggest a role for T cell help in the immunodominance of protozoan repetitive antigens.


Subject(s)
Antigens, Protozoan/immunology , Epitopes, T-Lymphocyte/immunology , Immunodominant Epitopes , Protozoan Proteins/immunology , Trypanosoma cruzi/immunology , Amino Acid Sequence , Animals , Antibodies, Protozoan/blood , Antigens, Protozoan/chemistry , Chagas Disease/immunology , HLA-DQ Antigens/genetics , HLA-DQ Antigens/metabolism , HLA-DQ alpha-Chains , HLA-DR1 Antigen/genetics , HLA-DR1 Antigen/metabolism , HLA-DR2 Antigen/genetics , HLA-DR2 Antigen/metabolism , Humans , Models, Molecular , Molecular Sequence Data , Protein Binding , Protozoan Proteins/chemistry
17.
Microbes Infect ; 7(4): 688-97, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15848276

ABSTRACT

Chronic Chagas disease occurs in 16 million individuals chronically infected by the protozoan Trypanosoma cruzi in Latin America, and may lead to a dilated cardiomyopathy in 10-30% of patients. A vigorous cellular immune response holds parasitism in check. However, up to now, few T. cruzi proteins have been shown to be recognized by CD8+ T cells from Chagas disease patients. In this study, we designed 94 peptides derived from T. cruzi proteins cruzipain and FL-160, predicted to bind to HLA-A2 molcules. After in vitro binding assays to HLA-A*0201, 26 peptides were selected, and their recognition by PBMC from Chagas disease patients was tested with the IFN-gamma ELISPOT assay. All 26 peptides were recognized by PBMC from at least one patient. Furthermore, a tetrameric HLA-A*0201 complex built with the cruzipain 60-68 peptide that was frequently recognized in the periphery also bound to CD8+ T cells from a heart-infiltrating T cell line obtained from a single patient with Chagas disease cardiomyopathy. Thus, our results suggest that the recognition of CD8+ T cell epitopes in cruzipain and FL-160 may have a pathogenic or protective role in chronic Chagas disease.


Subject(s)
Antigens, Protozoan/immunology , CD8-Positive T-Lymphocytes/immunology , Cysteine Endopeptidases/immunology , Epitope Mapping , Epitopes, T-Lymphocyte/immunology , HLA-A Antigens/immunology , Trypanosoma cruzi/immunology , Amino Acid Sequence , Animals , Cell Line , Chagas Disease/immunology , Chagas Disease/parasitology , Chronic Disease , HLA-A2 Antigen , Humans , Interferon-gamma/biosynthesis , Leukocytes, Mononuclear/immunology , Molecular Sequence Data , Peptides/chemistry , Peptides/immunology , Protozoan Proteins
18.
Rev. bras. alergia imunopatol ; 28(1): 20-25, jan.-fev. 2005. ilus, tab
Article in Portuguese | LILACS | ID: lil-408015

ABSTRACT

Objetivo: alguns pacientes alérgicos ao veneno de vespas apresentam pesquisa negativa de IgE específica com os extratos disponíveis. Para investigar esta falta de reação cruzada, este estudo pretende caracterizar os antígenos principais do veneno de uma das espécies encontradas no Brasil, a Agelaia pallipes, utilizando a análise proteômica. Método: realizamos eletroforese bidimensional com veneno de Agelaia pallipes. Na primeira dimensão utilizamos tiras de gel de 7 cm com gradiente de pH de 3.0 -10.0, e na segunda SDS-PAGE 15%. Com géis feitos em duplicata, o primeiro foi transferido para nitrocelulose e incubado com o soro de paciente sensibilizado (diluição 1:5). A imunodetecção foi realizada com anti-IgE humana biotinilada e ECL (Enhanced Chemiluminescence). No segundo gel, corado Coomassie, os spots correspondentes às proteínas reconhecidas pela IgE através do immuniblotting foram processados e analisados no espectrometro de massa do tipo MALDI-ToF. A identificação foi obtida por PMF - Peptide Mass Fingerprinting. Resultados: a eletroforese bidimensional com o veneno da Agelaia pallipes evidenciou várias proteínas com peso molecular (PM) abaixo de 20kDa. Com immunoblotting foram detectadas proteínas reconhecidas pela IgE com PM entre 20 e 38 kDa. Pela análise proteômica, estas proteínas foram identificadas principalmente como antígeno 5 e serino-proteases. Conclusão: este é o primeiro trabalho a identificar alérgenos de vespas neotropicais com análise proteômica. Além do antígeno 5, identificamos serino-proteases que apenas recentemente foram citadas neste tipo de amostra biológica, mostrando semelhança parcial entre estas proteínas de venenos de vertebrados (serpentes). Nosso projeto futuro será o sequenciamento das amostras.


Subject(s)
Humans , Animals , Male , Middle Aged , Immunodominant Epitopes/immunology , Immunoglobulin E/immunology , Proteomics , Wasp Venoms/immunology , Wasps/immunology , Blotting, Western , Electrophoresis, Gel, Two-Dimensional , Peptide Mapping , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Wasp Venoms/blood
19.
FEBS Lett ; 547(1-3): 87-91, 2003 Jul 17.
Article in English | MEDLINE | ID: mdl-12860391

ABSTRACT

Methionine sulfoxide is a post-translational protein modification that has been receiving increasing attention in the literature. Here we used electron paramagnetic resonance spin trapping techniques to show that free and peptide-bound methionine sulfoxide is oxidized by hydrogen peroxide/iron(II)-EDTA and peroxynitrite through the intermediacy of the hydroxyl radical to produce both *CH3 and *CH2CH2CH radicals. The results indicate that methionine sulfoxide residues are important targets of reactive oxygen- and nitrogen-derived species in proteins. Since the produced protein-derived radicals can propagate oxidative damage, the results add a new antioxidant route for the action of the enzyme peptide methionine sulfoxide reductase.


Subject(s)
Free Radicals , Hydrogen Peroxide , Iron , Methionine/analogs & derivatives , Methionine/chemistry , Peptides/chemistry , Peroxynitrous Acid , Electron Spin Resonance Spectroscopy , Molecular Conformation , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL