Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Invest Dermatol ; 141(9): 2178-2188.e6, 2021 09.
Article in English | MEDLINE | ID: mdl-33984347

ABSTRACT

Maintaining tissue homeostasis depends on a balance between cell proliferation, differentiation, and apoptosis. Within the epidermis, the levels of the polyamines putrescine, spermidine, and spermine are altered in many different skin conditions, yet their role in epidermal tissue homeostasis is poorly understood. We identify the polyamine regulator, Adenosylmethionine decarboxylase 1 (AMD1), as a crucial regulator of keratinocyte (KC) differentiation. AMD1 protein is upregulated on differentiation and is highly expressed in the suprabasal layers of the human epidermis. During KC differentiation, elevated AMD1 promotes decreased putrescine and increased spermine levels. Knockdown or inhibition of AMD1 results in reduced spermine levels and inhibition of KC differentiation. Supplementing AMD1-knockdown KCs with exogenous spermidine or spermine rescued aberrant differentiation. We show that the polyamine shift is critical for the regulation of key transcription factors and signaling proteins that drive KC differentiation, including KLF4 and ZNF750. These findings show that human KCs use controlled changes in polyamine levels to modulate gene expression to drive cellular behavior changes. Modulation of polyamine levels during epidermal differentiation could impact skin barrier formation or can be used in the treatment of hyperproliferative skin disorders.


Subject(s)
Adenosylmethionine Decarboxylase/metabolism , Epidermal Cells/metabolism , Spermine/metabolism , Adenosylmethionine Decarboxylase/genetics , Animals , Cell Differentiation , Cell Proliferation , Cells, Cultured , Epidermal Cells/pathology , Gene Knockdown Techniques , Humans , Kruppel-Like Factor 4/metabolism , Mice , Polyamines/metabolism , Signal Transduction , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism , Up-Regulation
2.
J Invest Dermatol ; 140(10): 2032-2040.e1, 2020 10.
Article in English | MEDLINE | ID: mdl-32119868

ABSTRACT

Hyperpigmentary conditions can arise when melanogenesis in the epidermis is misregulated. Understanding the pathways underlying melanogenesis is essential for the development of effective treatments. Here, we report that a group of metabolites called polyamines are important in the control of melanogenesis in human skin. Polyamines are cationic molecules present in all cells and are essential for cellular function. We report that polyamine regulator ODC1 is upregulated in melanocytes from melasma lesional skin. We report that the polyamine putrescine can promote pigmentation in human skin explants and primary normal human epidermal melanocytes through induction of tyrosinase which is rate-limiting for the synthesis of melanin. Putrescine supplementation on normal human epidermal melanocytes results in the activation of polyamine catabolism, which results in increased intracellular H2O2. Polyamine catabolism is also increased in human skin explants that have been treated with putrescine. We further report that inhibition of polyamine catabolism prevents putrescine-induced promotion of tyrosinase levels and pigmentation in normal human epidermal melanocytes, showing that polyamine catabolism is responsible for the putrescine induction of melanogenesis. Our data showing that putrescine promotes pigmentation has important consequences for hyperpigmented and hypopigmented conditions. Further understanding of how polyamines control epidermal pigmentation could open the door for the development of new therapeutics.


Subject(s)
Epidermis/drug effects , Melanins/biosynthesis , Putrescine/pharmacology , Biogenic Polyamines/metabolism , Cells, Cultured , Dicarboxylic Acid Transporters/physiology , Epidermis/metabolism , Humans , Melanocytes/drug effects , Melanocytes/metabolism , Middle Aged , Mitochondrial Membrane Transport Proteins/physiology , Putrescine/analogs & derivatives , Skin Pigmentation/drug effects
3.
J Invest Dermatol ; 138(12): 2653-2665, 2018 12.
Article in English | MEDLINE | ID: mdl-29906410

ABSTRACT

Wound healing is a dynamic process involving gene-expression changes that drive re-epithelialization. Here, we describe an essential role for polyamine regulator AMD1 in driving cell migration at the wound edge. The polyamines, putrescine, spermidine, and spermine are small cationic molecules that play essential roles in many cellular processes. We demonstrate that AMD1 is rapidly upregulated following wounding in human skin biopsies. Knockdown of AMD1 with small hairpin RNAs causes a delay in cell migration that is rescued by the addition of spermine. We further show that spermine can promote cell migration in keratinocytes and in human ex vivo wounds, where it significantly increases epithelial tongue migration. Knockdown of AMD1 prevents the upregulation of urokinase-type plasminogen activator/urokinase-type plasminogen activator receptor on wounding and results in a failure in actin cytoskeletal reorganization at the wound edge. We demonstrate that keratinocytes respond to wounding by modulating polyamine regulator AMD1 in order to regulate downstream gene expression and promote cell migration. This article highlights a previously unreported role for the regulation of polyamine levels and ratios in cellular behavior and fate.


Subject(s)
Adenosylmethionine Decarboxylase/metabolism , Cell Movement/genetics , Epidermis/physiology , Keratinocytes/physiology , Wound Healing , Wounds and Injuries/metabolism , Actin Cytoskeleton/metabolism , Adenosylmethionine Decarboxylase/genetics , Biopsy , Calcium Signaling , Cells, Cultured , Humans , RNA, Small Interfering/genetics , Re-Epithelialization/genetics , Spermine/metabolism , Up-Regulation , Wounds and Injuries/genetics
4.
Mol Plant ; 10(11): 1387-1399, 2017 11 06.
Article in English | MEDLINE | ID: mdl-28965832

ABSTRACT

5-Methylcytosine (m5C) is a well-characterized DNA modification, and is also predominantly reported in abundant non-coding RNAs in both prokaryotes and eukaryotes. However, the distribution and biological functions of m5C in plant mRNAs remain largely unknown. Here, we report transcriptome-wide profiling of RNA m5C in Arabidopsis thaliana by applying m5C RNA immunoprecipitation followed by a deep-sequencing approach (m5C-RIP-seq). LC-MS/MS and dot blot analyses reveal a dynamic pattern of m5C mRNA modification in various tissues and at different developmental stages. m5C-RIP-seq analysis identified 6045 m5C peaks in 4465 expressed genes in young seedlings. We found that m5C is enriched in coding sequences with two peaks located immediately after start codons and before stop codons, and is associated with mRNAs with low translation activity. We further demonstrated that an RNA (cytosine-5)-methyltransferase, tRNA-specific methyltransferase 4B (TRM4B), exhibits m5C RNA methyltransferase activity. Mutations in TRM4B display defects in root development and decreased m5C peaks. TRM4B affects the transcript levels of the genes involved in root development, which is positively correlated with their mRNA stability and m5C levels. Our results suggest that m5C in mRNA is a new epitranscriptome marker inArabidopsis, and that regulation of this modification is an integral part of gene regulatory networks underlying plant development.


Subject(s)
5-Methylcytosine/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Methylation , Plant Roots/metabolism , RNA, Messenger/genetics
5.
Exp Anim ; 65(1): 53-62, 2016.
Article in English | MEDLINE | ID: mdl-26558540

ABSTRACT

We previously found that deletion of the multifunctional factor ANP32B (a.k.a. SSP29, APRIL, PAL31, PHAPI2) resulted in a severe but strain-specific defect resulting in perinatal lethality. The difficulty in generating an adult cohort of ANP32B-deficient animals limited our ability to examine adult phenotypes, particularly cancer-related phenotypes. We bred the Anp32b-null allele into the BALB/c and FVB/N genetic background. The BALB/c, but not the FVB/N, background provided sufficient frequency of adult Anp32b-null (Anp32b(-/-)) animals. From these, we found no apparent oncogenic role for this protein in mammary tumorigenesis contrary to what was predicted based on human data. We also found runtism, pathologies in various organ systems, and an unusual clinical chemistry signature in the adult Anp32b(-/-) mice. Intriguingly, genome-wide single-nucleotide polymorphism analysis suggested that our colony retained an unlinked C57BL/6J locus at high frequency. Breeding this locus to homozygosity demonstrated that it had a strong effect on Anp32b(-/-) viability indicating that this locus contains a modifier gene of Anp32b with respect to development. This suggests a functionally important genetic interaction with one of a limited number of candidate genes, foremost among them being the variant histone gene H2afv. Using congenic breeding strategies, we have generated a viable ANP32B-deficient animal in a mostly pure background. We have used this animal to reliably exclude mouse ANP32B as an important oncogene in mammary tumorigenesis. Our further phenotyping strengthens the evidence that ANP32B is a widespread regulator of gene expression. These studies may also impact the choice of subsequent groups with respect to congenic breeding versus de novo zygote targeting strategies for background analyses in mouse genetics.


Subject(s)
Cell Cycle Proteins/metabolism , Mice, Inbred BALB C/genetics , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Alleles , Animals , Animals, Congenic , Breeding , Cell Cycle Proteins/deficiency , Female , Genes, Modifier/genetics , Genetic Association Studies , Histones/genetics , Homozygote , Male , Mammary Neoplasms, Animal/genetics , Mice, Inbred C57BL , Nerve Tissue Proteins/deficiency , Nuclear Proteins/deficiency , Phenotype , Polymorphism, Single Nucleotide
6.
Cancer Immunol Res ; 3(7): 721-6, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25941350

ABSTRACT

Caspase recuitment domain-containing protein 9 (CARD9) functions in different inflammation pathways to elicit responses to microbial signals and is known to affect intestinal inflammation. Examining the APC(min) mouse model of intestinal tumorigenesis and using stringently controlled, sex- and age-matched pairs of CARD9-competent and CARD9-deficient mice, we have found that CARD9 has a restricted but strong effect on tumorigenesis in the large intestine. We have found that CARD9 reduces viability specifically in males and promotes tumorigenesis specifically in the large intestines of these male mice. To our knowledge, this is the first gene ablation in APC(min) mice that solely affects colon tumors in male subjects and, as such, may have significant clinical implications. Additional data suggest correlative disruption of plasma cytokine expression and immune infiltration of the tumors. We speculate that known sex-specific differences in human colorectal cancer may involve inflammation, particularly CARD9-dependent inflammation.


Subject(s)
Adenoma/genetics , Cell Transformation, Neoplastic/genetics , Colonic Neoplasms/genetics , Cytokines/blood , Sex Characteristics , Adenoma/pathology , Animals , Colonic Neoplasms/pathology , Disease Models, Animal , Female , Male , Mice
7.
PLoS One ; 8(5): e63815, 2013.
Article in English | MEDLINE | ID: mdl-23675506

ABSTRACT

BACKGROUND: The ANP32 family of proteins have been implicated in neuronal function through biochemical and cellular biology studies in neurons, as well as by recent behavioural studies of a gene-trapped loss-of-function mutation of Anp32e in mice, particularly with respect to fine motor function. A second targeted allele of the Anp32e, however, did not appear to demonstrate neurological phenotypes. METHODOLOGY/PRINCIPAL FINDINGS: Using a stringently controlled cohort of ten-generation backcrossed, co-caged, sex-matched, littermate pairs, we assayed for potential motor defects in the targeted ANP32E-deficient mice. We found no phenotypic difference in any assays. CONCLUSION: Since it is unlikely that the gene-trap is a more complete loss-of-function, our results suggest that ANP32E has no appreciable effect on motor functions and that genetic background differences most likely account for the gene-trap phenomena.


Subject(s)
Motor Activity/physiology , Mutation , Nerve Tissue Proteins/genetics , Alleles , Animals , Female , Heterozygote , Homozygote , Male , Mice , Mice, Transgenic , Molecular Chaperones , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...