Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Phys Eng Express ; 10(5)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38959873

ABSTRACT

Objective. Recent innovative neurostimulators allow recording local field potentials (LFPs) while performing motor tasks monitored by wearable sensors. Inertial sensors can provide quantitative measures of motor impairment in people with subthalamic nucleus deep brain stimulation. To the best of our knowledge, there is no validated method to synchronize inertial sensors and neurostimulators without an additional device. This study aims to define a new synchronization method to analyze disease-related brain activity patterns during specific motor tasks and evaluate how LFPs are affected by stimulation and medication.Approach. Fourteen male subjects treated with subthalamic nucleus deep brain stimulation were recruited to perform motor tasks in four different medication and stimulation conditions. In each condition, a synchronization protocol was performed consisting of taps on the implanted neurostimulator, which produces artifacts in the LFPs that a nearby inertial sensor can simultaneously record.Main results. In 64% of the recruited subjects, induced artifacts were detected at least in one condition. Among those subjects, 83% of the recordings could be synchronized offline analyzing LFPs and wearables data. The remaining recordings were synchronized by video analysis.Significance. The proposed synchronization method does not require an external system (e.g., TENS electrodes) and can be easily integrated into clinical practice. The procedure is simple and can be carried out in a short time. A proper and simple synchronization will also be useful to analyze subthalamic neural activity in the presence of specific events (e.g., freezing of gait events) to identify predictive biomarkers.


Subject(s)
Deep Brain Stimulation , Subthalamic Nucleus , Humans , Deep Brain Stimulation/methods , Deep Brain Stimulation/instrumentation , Male , Middle Aged , Artifacts , Signal Processing, Computer-Assisted , Adult , Wearable Electronic Devices , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Brain , Aged
3.
Front Neurol ; 14: 1163811, 2023.
Article in English | MEDLINE | ID: mdl-37273691

ABSTRACT

Introduction: Subthalamic (STN) local field potentials (LFPs) in the beta band are considered potential biomarkers for closed-loop deep brain stimulation (DBS) in Parkinson's disease (PD). The beta band is further dissected into low-and high-frequency components with somewhat different functions, although their concomitance and association in the single patient is far to be defined. We present a 56-year-old male PD patient undergoing DBS showing a double-beta peak activity on both sides. The aim of the study was to investigate how low-and high-beta peaks were influenced by plasma levodopa (L-dopa) levels, stimulation, and motor performances. Methods: A systematic evaluation of raw LFPs, plasma L-dopa levels, and motor tasks was performed in the following four conditions: OFF medications/ON stimulation, OFF medications/OFF stimulation, ON medications/OFF stimulation, and ON medications/ON stimulation. Results: The analysis of the LFP spectra suggests the following results: (1) the high-beta peak was suppressed by stimulation, while the low-beta peak showed a partial and not consistent response to stimulation; (2) the high-beta peak is also influenced by plasma L-dopa concentration, showing a progressive amplitude increment concordant with plasma L-dopa levels, while the low-beta peak shows a different behavir; and (3) motor performances seem to impact beta peaks behavior. Conclusion: This single exploratory case study illustrates a complex behavior of low-and high-beta peaks in a PD patient, in response to stimulation, L-dopa plasma levels, and motor performances. Our results suggest the importance to investigate patient-specific individual LFP patterns in view of upcoming closed-loop stimulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...