Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 291
Filter
1.
BMC Plant Biol ; 24(1): 562, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38877425

ABSTRACT

BACKGROUND: On tropical regions, phosphorus (P) fixation onto aluminum and iron oxides in soil clays restricts P diffusion from the soil to the root surface, limiting crop yields. While increased root surface area favors P uptake under low-P availability, the relationship between the three-dimensional arrangement of the root system and P efficiency remains elusive. Here, we simultaneously assessed allelic effects of loci associated with a variety of root and P efficiency traits, in addition to grain yield under low-P availability, using multi-trait genome-wide association. We also set out to establish the relationship between root architectural traits assessed in hydroponics and in a low-P soil. Our goal was to better understand the influence of root morphology and architecture in sorghum performance under low-P availability. RESULT: In general, the same alleles of associated SNPs increased root and P efficiency traits including grain yield in a low-P soil. We found that sorghum P efficiency relies on pleiotropic loci affecting root traits, which enhance grain yield under low-P availability. Root systems with enhanced surface area stemming from lateral root proliferation mostly up to 40 cm soil depth are important for sorghum adaptation to low-P soils, indicating that differences in root morphology leading to enhanced P uptake occur exactly in the soil layer where P is found at the highest concentration. CONCLUSION: Integrated QTLs detected in different mapping populations now provide a comprehensive molecular genetic framework for P efficiency studies in sorghum. This indicated extensive conservation of P efficiency QTL across populations and emphasized the terminal portion of chromosome 3 as an important region for P efficiency in sorghum. Increases in root surface area via enhancement of lateral root development is a relevant trait for sorghum low-P soil adaptation, impacting the overall architecture of the sorghum root system. In turn, particularly concerning the critical trait for water and nutrient uptake, root surface area, root system development in deeper soil layers does not occur at the expense of shallow rooting, which may be a key reason leading to the distinctive sorghum adaptation to tropical soils with multiple abiotic stresses including low P availability and drought.


Subject(s)
Genome-Wide Association Study , Phosphorus , Plant Roots , Quantitative Trait Loci , Sorghum , Sorghum/genetics , Sorghum/metabolism , Sorghum/growth & development , Phosphorus/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/genetics , Plant Roots/anatomy & histology , Chromosome Mapping , Polymorphism, Single Nucleotide , Soil/chemistry , Phenotype
2.
Food Chem ; 449: 139189, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38593726

ABSTRACT

Non-enzymatic conversion of phenolic compounds plays an important role during thermal processing of plant-based food such as coffee, cocoa, and peanuts. However, the more prominent Maillard reaction is mainly studied at a mechanistic level for carbohydrates and amino compounds to clarify reactions that contribute to ('classic') melanoidin formation, but the role of phenolic compounds in such reactions is rarely discussed yet. To understand their contribution to non-enzymatic browning, reactions between ubiquitous phenolic acids, such as caffeic acid and ferulic acid, and prominent heterocyclic Maillard intermediates, namely furfural, hydroxymethylfurfural, and pyrrole-2-carbaldehyde were investigated. Following incubation under roasting conditions (220 °C, 0-30 min), heterogenous products were characterized by high-resolution mass spectrometry, and, after isolation, by nuclear magnetic resonance spectroscopy. By this, color precursors were identified, and it was shown that in addition to aromatic electrophilic substitution, nucleophilic and condensation reactions are key mechanisms contributing to the formation of phenol-containing melanoidins.


Subject(s)
Coumaric Acids , Maillard Reaction , Phenols , Coumaric Acids/chemistry , Phenols/chemistry , Hot Temperature , Polymers/chemistry , Coloring Agents/chemistry
3.
J Exp Bot ; 75(7): 2176-2190, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38113277

ABSTRACT

Under depleted external phosphate (Pi), many plant species adapt to this stress by initiating downstream signaling cascades. In plants, the vascular system delivers nutrients and signaling agents to control physiological and developmental processes. Currently, limited information is available regarding the direct role of phloem-borne long-distance signals in plant growth and development under Pi stress conditions. Here, we report on the identification and characterization of a cucumber protein, Cucumis sativus Phloem Phosphate Stress-Repressed 1 (CsPPSR1), whose level in the phloem translocation stream rapidly responds to imposed Pi-limiting conditions. CsPPSR1 degradation is mediated by the 26S proteasome; under Pi-sufficient conditions, CsPPSR1 is stabilized by its phosphorylation within the sieve tube system through the action of CsPPSR1 kinase. Further, we discovered that CsPPSR1 kinase was susceptible to Pi starvation-induced degradation in the sieve tube system. Our findings offer insight into a molecular mechanism underlying the response of phloem-borne proteins to Pi-limited stress conditions.


Subject(s)
Cucumis sativus , Cucumis sativus/metabolism , Phloem/metabolism , Phosphates/metabolism , Plant Proteins/metabolism
4.
aBIOTECH ; 4(4): 315-331, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38106432

ABSTRACT

Root system architecture (RSA) plays a pivotal role in efficient uptake of essential nutrients, such as phosphorous (P), nitrogen (N), and water. In soils with heterogeneous nutrient distribution, root plasticity can optimize acquisition and plant growth. Here, we present evidence that a constitutive RSA can confer benefits for sorghum grown under both sufficient and limiting growth conditions. Our studies, using P efficient SC103 and inefficient BTx635 sorghum cultivars, identified significant differences in root traits, with SC103 developing a larger root system with more and longer lateral roots, and enhanced shoot biomass, under both nutrient sufficient and deficient conditions. In addition to this constitutive attribute, under P deficiency, both cultivars exhibited an initial increase in lateral root development; however, SC103 still maintained the larger root biomass. Although N deficiency and drought stress inhibited both root and shoot growth, for both sorghum cultivars, SC103 again maintained the better performance. These findings reveal that SC103, a P efficient sorghum cultivar, also exhibited enhanced growth performance under N deficiency and drought. Our results provide evidence that this constitutive nature of RSA can provide an avenue for breeding nutrient- and drought-resilient crops. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-023-00112-w.

5.
J Endocrinol Invest ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37955834

ABSTRACT

AIM: Growth differentiation factor 15 (GDF15) is a stress response cytokine that has been proposed as a relevant metabolic hormone. Descriptive studies have shown that plasma GDF15 levels are regulated by short term changes in nutritional status, such as fasting, or in obesity. However, few data exist regarding how GDF15 levels are regulated in peripheral tissues. The aim of the present work was to study the variations on gastric levels of GDF15 and its precursor under different physiological conditions, such as short-term changes in nutritional status or overfeeding achieved by HFD. Moreover, we also address the sex- and age-dependent alterations in GDF15 physiology. METHODS: The levels of gastric and plasma GDF15 and its precursor were measured in lean and obese mice, rats and humans by western blot, RT-PCR, ELISA, immunohistochemistry and by an in vitro organ culture system. RESULTS: Our results show a robust regulation of gastric GDF15 production by fasting in rodents. In obesity an increase in GDF15 secretion from the stomach is reflected with an increase in circulating levels of GDF15 in rats and humans. Moreover, gastric GDF15 levels increase with age in both rats and humans. Finally, gastric GDF15 levels display sexual dimorphism, which could explain the difference in circulating GFD15 levels between males and females, observed in both humans and rodents. CONCLUSIONS: Our results provide clear evidence that gastric GDF15 is a critical contributor of circulating GDF15 levels and can explain some of the metabolic effects induced by GDF15.

6.
Plant Phenomics ; 5: 0097, 2023.
Article in English | MEDLINE | ID: mdl-37780968

ABSTRACT

Nutrient-efficient root system architecture (RSA) is becoming an important breeding objective for generating crop varieties with improved nutrient and water acquisition efficiency. Genetic variants shaping soybean RSA is key in improving nutrient and water acquisition. Here, we report on the use of an improved 2-dimensional high-throughput root phenotyping platform that minimizes background noise by imaging pouch-grown root systems submerged in water. We also developed a background image cleaning Python pipeline that computationally removes images of small pieces of debris and filter paper fibers, which can be erroneously quantified as root tips. This platform was used to phenotype root traits in 286 soybean lines genotyped with 5.4 million single-nucleotide polymorphisms. There was a substantially higher correlation in manually counted number of root tips with computationally quantified root tips (95% correlation), when the background was cleaned of nonroot materials compared to root images without the background corrected (79%). Improvements in our RSA phenotyping pipeline significantly reduced overestimation of the root traits influenced by the number of root tips. Genome-wide association studies conducted on the root phenotypic data and quantitative gene expression analysis of candidate genes resulted in the identification of 3 putative positive regulators of root system depth, total root length and surface area, and root system volume and surface area of thicker roots (DOF1-like zinc finger transcription factor, protein of unknown function, and C2H2 zinc finger protein). We also identified a putative negative regulator (gibberellin 20 oxidase 3) of the total number of lateral roots.

7.
Plants (Basel) ; 12(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37896080

ABSTRACT

Phosphorus (P) is an essential plant macronutrient; however, its availability is often limited in soils. Plants have evolved complex mechanisms for efficient phosphate (Pi) absorption, which are responsive to changes in external and internal Pi concentration, and orchestrated through local and systemic responses. To explore these systemic Pi responses, here we identified AtMYB44 as a phloem-mobile mRNA, an Arabidopsis homolog of Cucumis sativus MYB44, that is responsive to the Pi-starvation stress. qRT-PCR assays revealed that AtMYB44 was up-regulated and expressed in both shoot and root in response to Pi-starvation stress. The atmyb44 mutant displayed higher shoot and root biomass compared to wild-type plants, under Pi-starvation conditions. Interestingly, the expression of PHOSPHATE TRANSPORTER1;2 (PHT1;2) and PHT1;4 was enhanced in atmyb44 in response to a Pi-starvation treatment. A split-root assay showed that AtMYB44 expression was systemically regulated under Pi-starvation conditions, and in atmyb44, systemic controls on PHT1;2 and PHT1;4 expression were moderately disrupted. Heterografting assays confirmed graft transmission of AtMYB44 transcripts, and PHT1;2 and PHT1;4 expression was decreased in heterografted atmyb44 rootstocks. Taken together, our findings support the hypothesis that mobile AtMYB44 mRNA serves as a long-distance Pi response signal, which negatively regulates Pi transport and utilization in Arabidopsis.

8.
Sci Total Environ ; 905: 166828, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37690766

ABSTRACT

This study investigates the role of floating plastics as integrative samplers of organic contaminants. To this end, plastics items were collected in two Western Mediterranean coastal areas: the Mar Menor lagoon, and the last transect of Ebro river. Floating plastics were identified and characterized by attenuated total reflection Fourier-transform infrared spectrometry. Then, organic contaminants were extracted from plastic items by ultrasonic extraction with methanol, and the concentrations of 168 regulated and emerging contaminants were analysed. These compounds were analysed by stir bar sorptive extraction coupled to gas chromatography-mass spectrometry (GC-MS), except for bisphenol analogues, which were analysed with a ultraperformance liquid chromatography pump coupled to a triple quadrupole mass spectrometer (UHPLC-MS/MS), and pharmaceutical compounds, determined by UPLC coupled to hybrid triple quadrupole-linear ion trap mass spectrometer (UPLC-MS/MS). All the contaminants groups considered were detected in the samples, being particularly relevant the contribution of plastic additives. The most frequently detected contaminants were UV-filters, PAHs, pharmaceuticals and synthetic musks. Apart from plasticizers, the individual contaminants octocrylene, homosalate, galaxolide, salycilic acid and ketoprofen were frequently detected in plastics items. The results pointed out to urban and touristic activities as the main sources of pollution in the coastal areas investigated. The utility of floating plastics as integrative samplers for the detection of organic contaminants in aquatic ecosystems has been demonstrated.


Subject(s)
Tandem Mass Spectrometry , Water Pollutants, Chemical , Chromatography, Liquid , Ecosystem , Gas Chromatography-Mass Spectrometry , Water Pollutants, Chemical/analysis , Plastics/analysis
9.
Proc Natl Acad Sci U S A ; 120(35): e2300446120, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37611056

ABSTRACT

Nitrate distribution in soils is often heterogeneous. Plants have adapted to this by modifying their root system architecture (RSA). Previous studies showed that NITRATE-TRANSPORTER1.1 (NRT1.1), which also transports auxin, helps inhibit lateral root primordia (LRP) emergence in nitrate-poor patches, by preferentially transporting auxin away from the LRP. In this study, we identified the regulatory system for this response involving the transcription factor (TF), SENSITIVE-TO-PROTON-RHIZOTOXICITY1 (STOP1), which is accumulated in the nuclei of LRP cells under nitrate deficiency and directly regulates Arabidopsis NRT1.1 expression. Mutations in STOP1 mimic the root phenotype of the loss-of-function NRT1.1 mutant under nitrate deficiency, compared to wild-type plants, including increased LR growth and higher DR5promoter activity (i.e., higher LRP auxin signaling/activity). Nitrate deficiency-induced LR growth inhibition was almost completely reversed when STOP1 and the TF, TEOSINTE-BRANCHED1,-CYCLOIDEA,-PCF-DOMAIN-FAMILY-PROTEIN20 (TCP20), a known activator of NRT1.1 expression, were both mutated. Thus, the STOP1-TCP20 system is required for activation of NRT1.1 expression under nitrate deficiency, leading to reduced LR growth in nitrate-poor regions. We found this STOP1-mediated system is more active as growth media becomes more acidic, which correlates with reductions in soil nitrate as the soil pH becomes more acidic. STOP1 has been shown to be involved in RSA modifications in response to phosphate deficiency and increased potassium uptake, hence, our findings indicate that root growth regulation in response to low availability of the major fertilizer nutrients, nitrogen, phosphorus and potassium, all involve STOP1, which may allow plants to maintain appropriate root growth under the complex and varying soil distribution of nutrients.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Nitrates , Transcription Factors/genetics , Arabidopsis/genetics , Biological Transport , Indoleacetic Acids , Plant Proteins , Anion Transport Proteins/genetics , Arabidopsis Proteins/genetics
10.
J Hazard Mater ; 458: 131904, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37356174

ABSTRACT

Pharmaceuticals and microplastics constitute potential hazards in aquatic systems, but their combined effects and underlying toxicity mechanisms remain largely unknown. In this study, a simultaneous characterization of bioaccumulation, associated metabolomic alterations and potential recovery mechanisms was performed. Specifically, a bioassay on Mediterranean mussels (Mytilus galloprovincialis) was carried out with polyethylene microplastics (PE-MPLs, 1 mg/L) and citalopram or bezafibrate (500 ng/L). Single and co-exposure scenarios lasted 21 days, followed by a 7-day depuration period to assess their potential recovery. PE-MPLs delayed the bioaccumulation of citalopram (lower mean at 10 d: 447 compared to 770 ng/g dw under single exposure), although reaching similar tissue concentrations after 21 d. A more limited accumulation of bezafibrate was observed overall, regardless of PE-MPLs co-exposure (

Subject(s)
Mytilus , Water Pollutants, Chemical , Animals , Microplastics/metabolism , Polyethylene/metabolism , Bezafibrate/metabolism , Bezafibrate/pharmacology , Plastics/metabolism , Citalopram/metabolism , Citalopram/pharmacology , Bioaccumulation , Pharmaceutical Preparations/metabolism , Water Pollutants, Chemical/analysis
11.
Av. odontoestomatol ; 39(2)abr.-jun. 2023. tab
Article in Spanish | IBECS | ID: ibc-223394

ABSTRACT

Objetivo: Determinar la confianza de los estudiantes de 4to y 5to año de Odontología al realizar tratamientos de conducto uniradiculares. Materiales y métodos: Se evaluaron 81 estudiantes de Odontología de una universidad privada de Lima a través del cuestionario elaborado por Davey para medir su confianza al realizar tratamientos endodónticosuniradiculares. Se comprobó la validez interna a través de la traducción del cuestionario, juicio de expertos y una prueba piloto; en donde, se obtuvieron coeficientes de V de Aiken (0.91), Alfa de Cronbach (0.89) y correlación de Spearman (0.61). Se obtuvieron medidas estadísticas descriptivas (Media, D.E, Mediana y RIC) de la confianza y co variables. Asimismo, para el análisis bivariado se empleó la prueba de U de Mann Whitney, Kruskal Wallis y Correlación de Spearman. Resultados: Se encontró un elevado puntaje de confianza (8.51) en los estudiantes al realizar una endodoncia uniradicular y los puntajes más bajos fueron al determinar la longitud de trabajo y la obturación de los conductos con un promedio de 8.19 y 8.01. Asimismo, las variables experiencia previa, percepción de complicación y haber tenido una complicación fueron estadísticamente significativas. Finalmente, se encontró una correlación positiva entre las dimensiones de las variables percepción de la enseñanza en endodoncia y la confianza. Conclusiones: Existe una elevada confianza al realizar tratamientos de conductos uniradiculares en los estudiantes de 4to y 5to año de la carrera de Odontología. (AU)


Objective: To determine the confidence when performing single root canal treatments of the 4th and 5th year students of the Dentistry at a Private University of Lima. Materials and Methods: Eighty-one dental students from a private university in Lima were evaluated through a survey of the article prepared by Davey to measure their confidence when performing single root canal treatment. Internal validity was verified through questionnaire translation processes, expert judgment and a pilot test. Adequate coefficient of Aiken’s V (0.91), Cronbach’s Alpha (0.89), and Spearman’s correlation (0.61) were obtained. Descriptive statistical measures were obtained (Mean, S.D, Median, and IQR) and for the bivariate analysis, U Mann Whitney’s, Kruskal Wallis, Dunn Test and Spearman’s Correlation tests were used. Results: Students had a high confidence score (8.51) when performing a single root canal treatment and the lowest scores were when determining the length of work and the obturation of the canals with an average of 8.19 and 8.01 respectively. Likewise, the variables as previous experience, perception of complication and having had difficulties were statistically significant. Finally, a positive correlation was found between the dimensions of the variable perception of teaching in endodontics (p=0.003) (p=0.000) (p=0.000) and the variable confidence. Conclusions: There is high confidence when performing single root canal treatment by the students of 4th and 5th year of the Dentistry career. (AU)


Subject(s)
Humans , Male , Female , Young Adult , Adult , Education, Dental , Students, Dental , Endodontics , Trust , Cross-Sectional Studies , Epidemiology, Descriptive , Surveys and Questionnaires , Peru
12.
Environ Res ; 228: 115887, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37054836

ABSTRACT

Coastal ecosystems are particularly vulnerable to terrestrial inputs from human-impacted areas. The prevalence of wastewater treatment plants, unable to remove contaminants such as pharmaceuticals (PhACs), leads to their continuous input into the marine environment. In this paper, the seasonal occurrence of PhACs in a semi-confined coastal lagoon (the Mar Menor, south-eastern Spain) was studied during 2018 and 2019 by evaluating their presence in seawater and sediments, and their bioaccumulation in aquatic organisms. Temporal variation in the contamination levels was evaluated by comparison to a previous study carried out between 2010 and 2011 before the cessation of permanent discharges of treated wastewater into the lagoon. The impact of a flash flood event (September 2019) on PhACs pollution was also assessed. A total of seven compounds (out of 69 PhACs analysed) were found in seawater during 2018-2019, with a limited detection frequency (<33%) and concentrations (up to 11 ng/L of clarithromycin). Only carbamazepine was found in sediments (ND-1.2 ng/g dw), suggesting an improved environmental quality in comparison to 2010-2011 (when 24 and 13 compounds were detected in seawater and sediments, respectively). However, the biomonitoring of fish and molluscs showed a still remarkable accumulation of analgesic/anti-inflammatory drugs, lipid regulators, psychiatric drugs and ß-blocking agents, albeit not higher than in 2010. The flash flood event from 2019 increased the prevalence of PhACs in the lagoon, compared to the 2018-2019 sampling campaigns, especially in the upper water layer. After the flash flood the antibiotics clarithromycin and sulfapyridine yielded the highest concentrations ever reported in the lagoon (297 and 145 ng/L, respectively), alongside azithromycin in 2011 (155 ng/L). Flash flood events associated with sewer overflows and soil mobilisation, which are expected to increase under climate change scenarios, should be considered when assessing the risks posed by pharmaceuticals to vulnerable aquatic ecosystems in the coastal areas.


Subject(s)
Ecosystem , Water Pollutants, Chemical , Humans , Animals , Environmental Monitoring , Floods , Bioaccumulation , Clarithromycin , Water Pollutants, Chemical/analysis , Pharmaceutical Preparations
15.
Plant Cell ; 35(6): 2157-2185, 2023 05 29.
Article in English | MEDLINE | ID: mdl-36814393

ABSTRACT

Copper (Cu) and iron (Fe) are essential micronutrients that are toxic when accumulating in excess in cells. Thus, their uptake by roots is tightly regulated. While plants sense and respond to local Cu availability, the systemic regulation of Cu uptake has not been documented in contrast to local and systemic control of Fe uptake. Fe abundance in the phloem has been suggested to act systemically, regulating the expression of Fe uptake genes in roots. Consistently, shoot-to-root Fe signaling is disrupted in Arabidopsis thaliana mutants lacking the phloem companion cell-localized Fe transporter, OLIGOPEPTIDE TRANSPORTER 3 (AtOPT3). We report that AtOPT3 also transports Cu in heterologous systems and contributes to its delivery from sources to sinks in planta. The opt3 mutant contained less Cu in the phloem, was sensitive to Cu deficiency and mounted a transcriptional Cu deficiency response in roots and young leaves. Feeding the opt3 mutant and Cu- or Fe-deficient wild-type seedlings with Cu or Fe via the phloem in leaves downregulated the expression of both Cu- and Fe-deficiency marker genes in roots. These data suggest the existence of shoot-to-root Cu signaling, highlight the complexity of Cu/Fe interactions, and the role of AtOPT3 in fine-tuning root transcriptional responses to the plant Cu and Fe needs.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Copper , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Phloem/genetics , Phloem/metabolism , Homeostasis , Iron/metabolism , Plants/metabolism , Membrane Transport Proteins/metabolism
16.
Mar Pollut Bull ; 187: 114542, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36669297

ABSTRACT

The occurrence and distribution of UV filters, plastic additives, synthetic musks, other personal care products (Other PCPs), triazines, polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), organophosphorus pesticides (OPPs), polychlorinated biphenyls (PCBs) and other current-use pesticides (Other CUPs) were characterised during summer 2018 and winter 2019 in surface waters of two sensitive areas of the Spanish coast located on the Mediterranean Sea (Mar Menor lagoon and Ebro Delta). Sixty-three organic contaminants out of a total of 100 compounds were detected, thus confirming the presence of all groups of pollutants studied in surface water at concentrations of ng/L. Both areas are affected by agricultural, urban and recreational activities, PCPs (mainly UV filters) being the predominant compounds found in both seasons which showed significant increases in concentrations in summer. The contaminants found at the highest concentrations were octocrylene, homosalate and ethylhexyl salicylate, which showed risk quotients higher than 1, indicating a potential risk to aquatic organisms, particularly in summer.


Subject(s)
Hydrocarbons, Chlorinated , Pesticides , Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Pesticides/analysis , Organophosphorus Compounds , Water Pollutants, Chemical/analysis , Environmental Monitoring , Polychlorinated Biphenyls/analysis , Hydrocarbons, Chlorinated/analysis , Polycyclic Aromatic Hydrocarbons/analysis
17.
J Exp Bot ; 74(6): 1784-1805, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36708176

ABSTRACT

The soil contributes to the main pool of essential mineral nutrients for plants. These mineral nutrients are critical elements for the building blocks of plant biomolecules, play fundamental roles in cell processes, and act in various enzymatic reactions. The roots are the main entry point for mineral nutrients used within the plant to grow, develop, and produce seeds. In this regard, a suite of plant nutrient transport systems, sensors, and signaling proteins function in acquiring mineral nutrients through the roots. Mineral nutrients from chemical fertilizers, composed mainly of nitrogen, phosphorus, and potassium (NPK), are added to agricultural land to maximize crop yields, worldwide. However, improving nutrient uptake and use within crops is critical for economically and environmentally sustainable agriculture. Therefore, we review the molecular basis for N, P, and K nutrient uptake into the roots. Remarkably, plants are responsive to heterogeneous nutrient distribution and align root growth and nutrient uptake with nutrient-rich patches. We highlight the relationship between nutrient distribution in the growth environment and root system architecture. We discuss the exchange of information between the root and shoot systems through the xylem and phloem, which coordinates nutrient uptake with photosynthesis. The size and structure of the root system, along with the abundance and activity of nutrient transporters, largely determine the nutrient acquisition rate. Lastly, we discuss connections between N, P, and K uptake and signaling.


Subject(s)
Plant Roots , Soil , Plant Roots/metabolism , Biological Transport , Minerals/metabolism , Crops, Agricultural/metabolism
19.
Commun Biol ; 5(1): 1412, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36564439

ABSTRACT

Production of viable progeny from interploid crosses requires precise regulation of gene expression from maternal and paternal chromosomes, yet the transcripts contributed to hybrid seeds from polyploid parent species have rarely been explored. To investigate the genome-wide maternal and paternal contributions to polyploid grain development, we analyzed the transcriptomes of developing embryos, from zygote to maturity, alongside endosperm in two stages of development, using reciprocal crosses between tetraploid and hexaploid wheats. Reciprocal crosses between species with varied levels of ploidy displayed broad impacts on gene expression, including shifts in alternative splicing events in select crosses, as illustrated by active splicing events, enhanced protein synthesis and chromatin remodeling. Homoeologous gene expression was repressed on the univalent D genome in pentaploids, but this suppression was attenuated in crosses with a higher ploidy maternal parent. Imprinted genes were identified in endosperm and early embryo tissues, supporting predominant maternal effects on early embryogenesis. By systematically investigating the complex transcriptional networks in reciprocal-cross hybrids, this study presents a framework for understanding the genomic incompatibility and transcriptome shock that results from interspecific hybridization and uncovers the transcriptional impacts on hybrid seeds created from agriculturally-relevant polyploid species.


Subject(s)
Tetraploidy , Triticum , Triticum/genetics , Seeds/genetics , Edible Grain/genetics , Polyploidy , Transcriptome
20.
Front Plant Sci ; 13: 934002, 2022.
Article in English | MEDLINE | ID: mdl-36204067

ABSTRACT

In plants, the actin cytoskeleton plays a critical role in defense against diverse pathogens. The formation of actin patches is essential for the intracellular transport of organelles and molecules toward pathogen penetration sites and the formation of papillae for an early cellular response to powdery mildew attack in Arabidopsis thaliana. This response process is regulated by the actin-related protein (ARP)2/3 complex and its activator, the WAVE/SCAR complex (W/SRC). The ARP2/3 complex is also required for maintaining steady-state levels of the defense-associated protein, PENETRATION 1 (PEN1), at the plasma membrane and for its deposition into papillae. However, specific ARP2 functionalities in this context remain unresolved, as knockout mutants expressing GFP-PEN1 reporter constructs could not be obtained by conventional crossing approaches. In this study, employing a CRISPR/Cas9 multiplexing-mediated genome editing approach, we produced an ARP2 knockout expressing the GFP-PEN1 marker in Arabidopsis. This study successfully identified diallelic somatic mutations with both ARP2 alleles edited among the primary T1 transgenic plants, and also obtained independent lines with stable arp2/arp2 mutations in the T2 generation. Further analyses on these arp2/arp2 mutants showed similar biological functions of ARP2 to ARP3 in the accumulation of PEN1 against fungal invasion. Together, this CRISPR/Cas9-based approach offers highly efficient simultaneous disruption of the two ARP2 alleles in GFP-PEN1-expressing lines, and a rapid method for performing live-cell imaging to facilitate the investigation of important plant-pathogen interactions using a well-established and widely applied GFP marker system, thus gaining insights and elucidating the contributions of ARP2 upon fungal attack.

SELECTION OF CITATIONS
SEARCH DETAIL
...