Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(30): e2206644, 2023 07.
Article in English | MEDLINE | ID: mdl-36965146

ABSTRACT

Hydrogels are widely used as cell scaffolds in several biomedical applications. Once implanted in vivo, cell scaffolds must often be visualized, and monitored overtime. However, cell scaffolds appear poorly contrasted in most biomedical imaging modalities such as magnetic resonance imaging (MRI). MRI is the imaging technique of choice for high-resolution visualization of low-density, water-rich tissues. Attempts to enhance hydrogel contrast in MRI are performed with "negative" contrast agents that produce several image artifacts impeding the delineation of the implant's contours. In this study, a magnetic ink based on ultra-small iron oxide nanoparticles (USPIONs; <5 nm diameter cores) is developed and integrated into biocompatible alginate hydrogel used in cell scaffolding applications. Relaxometric properties of the magnetic hydrogel are measured, as well as biocompatibility and MR-visibility (T1 -weighted mode; in vitro and in vivo). A 2-week MR follow-up study is performed in the mouse model, demonstrating no image artifacts, and the retention of "positive" contrast overtime, which allows very precise delineation of tissue grafts with MRI. Finally, a 3D-contouring procedure developed to facilitate graft delineation and geometrical conformity assessment is applied on an inverted template alginate pore network. This proof-of-concept establishes the possibility to reveal precisely engineered hydrogel structures using this USPIONs ink high-visibility approach.


Subject(s)
Nanoparticles , Tissue Engineering , Mice , Animals , Follow-Up Studies , Ink , Tissue Scaffolds/chemistry , Magnetic Resonance Imaging/methods , Hydrogels/chemistry , Contrast Media , Alginates/chemistry
2.
Bioorg Med Chem ; 28(20): 115700, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33069076

ABSTRACT

The aggregation of ß-amyloid peptides is associated to neurodegeneration in Alzheimer's disease (AD) patients. Consequently, the inhibition of both oligomerization and fibrillation of ß-amyloid peptides is considered a plausible therapeutic approach for AD. Herein, the synthesis of new naphthalene derivatives and their evaluation as anti-ß-amyloidogenic agents are presented. Molecular dynamic simulations predicted the formation of thermodynamically stable complexes between the compounds, the Aß1-42 peptide and fibrils. In human microglia cells, these compounds inhibited the aggregation of Aß1-42 peptide. The lead compound 8 showed a high affinity to amyloid plaques in mice brain ex vivo assays and an adequate log Poct/PBS value. Compound 8 also improved the cognitive function and decreased hippocampal ß-amyloid burden in the brain of 3xTg-AD female mice. Altogether, our results suggest that 8 could be a novel therapeutic agent for AD.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Peptides/antagonists & inhibitors , Naphthalenes/pharmacology , Neuroprotective Agents/pharmacology , Peptide Fragments/antagonists & inhibitors , Protein Aggregates/drug effects , Protein Aggregation, Pathological/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Dose-Response Relationship, Drug , Mice , Mice, Inbred C57BL , Molecular Dynamics Simulation , Molecular Structure , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Peptide Fragments/metabolism , Protein Aggregation, Pathological/metabolism , Structure-Activity Relationship , Thermodynamics
3.
Curr Radiopharm ; 12(1): 58-71, 2019.
Article in English | MEDLINE | ID: mdl-30605068

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is the most common form of dementia. Neuroimaging methods have widened the horizons for AD diagnosis and therapy. The goals of this work are the synthesis of 2-(3-fluoropropyl)-6-methoxynaphthalene (5) and its [18F]-radiolabeled counterpart ([18F]Amylovis), the in silico and in vitro comparative evaluations of [18F]Amylovis and [11C]Pittsburg compound B (PIB) and the in vivo preclinical evaluation of [18F]Amylovis in transgenic and wild mice. METHODS: Iron-catalysis cross coupling reaction, followed by fluorination and radiofluorination steps were carried out to obtain 5 and 18F-Amylovis. Protein/Aß plaques binding, biodistribution, PET/CT Imaging and immunohistochemical studies were conducted in healthy/transgenic mice. RESULTS: The synthesis of 5 was successful obtained. Comparative in silico studies predicting that 5 should have affinity to the Aß-peptide, mainly through π-π interactions. According to a dynamic simulation study the ligand-Aß peptide complexes are stable in simulation-time (ΔG = -5.31 kcal/mol). [18F]Amylovis was obtained with satisfactory yield, high radiochemical purity and specific activity. The [18F]Amylovis log Poct/PBS value suggests its potential ability for crossing the blood brain barrier (BBB). According to in vitro assays, [18F]Amylovis has an adequate stability in time. Higher affinity to Aß plaques were found for [18F]Amylovis (Kd 0.16 nmol/L) than PIB (Kd 8.86 nmol/L) in brain serial sections of 3xTg-AD mice. Biodistribution in healthy mice showed that [18F]Amylovis crosses the BBB with rapid uptake (7 %ID/g at 5 min) and good washout (0.11±0.03 %ID/g at 60 min). Comparative PET dynamic studies of [18F]Amylovis in healthy and transgenic APPSwe/PS1dE9 mice, revealed a significant high uptake in the mice model. CONCLUSION: The in silico, in vitro and in vivo results justify that [18F]Amylovis should be studied as a promissory PET imaging agent to detect the presence of Aß senile plaques.


Subject(s)
Carbon Radioisotopes/chemistry , Fluorine Radioisotopes/chemistry , Fluorine Radioisotopes/pharmacology , Naphthalenes/chemistry , Neuroimaging/methods , Plaque, Amyloid/diagnostic imaging , Positron Emission Tomography Computed Tomography , Radiochemistry/methods , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacology , Animals , Computer Simulation , Immunohistochemistry , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...