Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Clin Chem ; 70(1): 102-115, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38175578

ABSTRACT

BACKGROUND: Increasing evidence implicates microbiome involvement in the development and progression of pancreatic ductal adenocarcinoma (PDAC). Studies suggest that reflux of gut or oral microbiota can lead to colonization in the pancreas, resulting in dysbiosis that culminates in release of microbial toxins and metabolites that potentiate an inflammatory response and increase susceptibility to PDAC. Moreover, microbe-derived metabolites can exert direct effector functions on precursors and cancer cells, as well as other cell types, to either promote or attenuate tumor development and modulate treatment response. CONTENT: The occurrence of microbial metabolites in biofluids thereby enables risk assessment and prognostication of PDAC, as well as having potential for design of interception strategies. In this review, we first highlight the relevance of the microbiome for progression of precancerous lesions in the pancreas and, using liquid chromatography-mass spectrometry, provide supporting evidence that microbe-derived metabolites manifest in pancreatic cystic fluid and are associated with malignant progression of intraductal papillary mucinous neoplasm(s). We secondly summarize the biomarker potential of microbe-derived metabolite signatures for (a) identifying individuals at high risk of developing or harboring PDAC and (b) predicting response to treatment and disease outcomes. SUMMARY: The microbiome-derived metabolome holds considerable promise for risk assessment and prognostication of PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Microbiota , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/diagnosis , Carcinoma, Pancreatic Ductal/diagnosis , Risk Assessment , Metabolome
2.
Front Oncol ; 13: 1256769, 2023.
Article in English | MEDLINE | ID: mdl-37876966

ABSTRACT

The kynurenine pathway (KP) and associated catabolites play key roles in promoting tumor progression and modulating the host anti-tumor immune response. To date, considerable focus has been on the role of indoleamine 2,3-dioxygenase 1 (IDO1) and its catabolite, kynurenine (Kyn). However, increasing evidence has demonstrated that downstream KP enzymes and their associated metabolite products can also elicit tumor-microenvironment immune suppression. These advancements in our understanding of the tumor promotive role of the KP have led to the conception of novel therapeutic strategies to target the KP pathway for anti-cancer effects and reversal of immune escape. This review aims to 1) highlight the known biological functions of key enzymes in the KP, and 2) provide a comprehensive overview of existing and emerging therapies aimed at targeting discrete enzymes in the KP for anti-cancer treatment.

3.
bioRxiv ; 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37645752

ABSTRACT

Background: The development of diverse spatial profiling technologies has provided an unprecedented insight into molecular mechanisms driving cancer pathogenesis. Here, we conducted the first integrated cross-species assessment of spatial transcriptomics and spatial metabolomics alterations associated with progression of intraductal papillary mucinous neoplasms (IPMN), bona fide cystic precursors of pancreatic ductal adenocarcinoma (PDAC). Methods: Matrix Assisted Laster Desorption/Ionization (MALDI) mass spectrometry (MS)-based spatial imaging and Visium spatial transcriptomics (ST) (10X Genomics) was performed on human resected IPMN tissues (N= 23) as well as pancreata from a mutant Kras;Gnas mouse model of IPMN. Findings were further compared with lipidomic analyses of cystic fluid from 89 patients with histologically confirmed IPMNs, as well as single-cell and bulk transcriptomic data of PDAC and normal tissues. Results: MALDI-MS analyses of IPMN tissues revealed long-chain hydroxylated sulfatides, particularly the C24:0(OH) and C24:1(OH) species, to be selectively enriched in the IPMN and PDAC neoplastic epithelium. Integrated ST analyses confirmed that the cognate transcripts engaged in sulfatide biosynthesis, including UGT8, Gal3St1 , and FA2H , were co-localized with areas of sulfatide enrichment. Lipidomic analyses of cystic fluid identified several sulfatide species, including the C24:0(OH) and C24:1(OH) species, to be significantly elevated in patients with IPMN/PDAC compared to those with low-grade IPMN. Targeting of sulfatide metabolism via the selective galactosylceramide synthase inhibitor, UGT8-IN-1, resulted in ceramide-induced lethal mitophagy and subsequent cancer cell death in vitro , and attenuated tumor growth of mutant Kras;Gnas allografts. Transcript levels of UGT8 and FA2H were also selectively enriched in PDAC transcriptomic datasets compared to non-cancerous areas, and elevated tumoral UGT8 was prognostic for poor overall survival. Conclusion: Enhanced sulfatide metabolism is an early metabolic alteration in cystic pre-cancerous lesions of the pancreas that persists through invasive neoplasia. Targeting sulfatide biosynthesis might represent an actionable vulnerability for cancer interception.

4.
Cancers (Basel) ; 15(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36765581

ABSTRACT

c-MYC and its paralogues MYCN and MYCL are among the most frequently amplified and/or overexpressed oncoproteins in ovarian cancer. c-MYC plays a key role in promoting ovarian cancer initiation and progression. The polyamine pathway is a bona fide target of c-MYC signaling, and polyamine metabolism is strongly intertwined with ovarian malignancy. Targeting of the polyamine pathway via small molecule inhibitors has garnered considerable attention as a therapeutic strategy for ovarian cancer. Herein, we discuss the involvement of c-MYC signaling and that of its paralogues in promoting ovarian cancer tumorigenesis. We highlight the potential of targeting c-MYC-driven polyamine metabolism for the treatment of ovarian cancers and the utility of polyamine signatures in biofluids for early detection applications.

5.
Cancers (Basel) ; 15(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36765792

ABSTRACT

The nuclear factor erythroid 2-related factor 2 (NRF2) pathway is frequently activated in various cancer types. Aberrant activation of NRF2 in cancer is attributed to gain-of-function mutations in the NRF2-encoding gene NFE2L2 or a loss of function of its suppressor, Kelch-like ECH-associated protein 1 (KEAP1). NRF2 activation exerts pro-tumoral effects in part by altering cancer cell metabolism. Previously, we reported a novel mechanism of NRF2 tumoral immune suppression through the selective upregulation of the tryptophan-metabolizing enzyme kynureninase (KYNU) in lung adenocarcinoma. In the current study, we explored the relevance of NRF2-mediated KYNU upregulation across multiple cancer types. Specifically, using a gene expression dataset for 9801 tumors representing 32 cancer types from The Cancer Genome Atlas (TCGA), we demonstrated that elevated KYNU parallels increased gene-based signatures of NRF2-activation and that elevated tumoral KYNU mRNA expression is strongly associated with an immunosuppressive tumor microenvironment, marked by high expression of gene-based signatures of Tregs as well as the immune checkpoint blockade-related genes CD274 (PDL-1), PDCD1 (PD-1), and CTLA4, regardless of the cancer type. Cox proportional hazard models further revealed that increased tumoral KYNU gene expression was prognostic for poor overall survival in several cancer types, including thymoma, acute myeloid leukemia, low-grade glioma, kidney renal papillary cell carcinoma, stomach adenocarcinoma, and pancreatic ductal adenocarcinoma (PDAC). Using PDAC as a model system, we confirmed that siRNA-mediated knockdown of NRF2 reduced KYNU mRNA expression, whereas activation of NFE2L2 (the coding gene for NRF2) through either small-molecule agonists or siRNA-mediated knockdown of KEAP1 upregulated KYNU in PDAC cells. Metabolomic analyses of the conditioned medium from PDAC cell lines revealed elevated levels of KYNU-derived anthranilate, confirming that KYNU was enzymatically functional. Collectively, our study highlights the activation of the NRF2-KYNU axis as a multi-cancer phenomenon and supports the relevance of tumoral KYNU as a marker of tumor immunosuppression and as a prognostic marker for poor overall survival.

6.
Cancers (Basel) ; 14(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36291752

ABSTRACT

Although harnessing the immune system for cancer therapy has shown success, response to immunotherapy has been limited. The immunopeptidome of cancer cells presents an opportunity to discover novel antigens for immunotherapy applications. These neoantigens bind to MHC class I and class II molecules. Remarkably, the immunopeptidome encompasses protein post-translation modifications (PTMs) that may not be evident from genome or transcriptome profiling. A case in point is citrullination, which has been demonstrated to induce a strong immune response. In this review, we cover how the immunopeptidome, with a special focus on PTMs, can be utilized to identify cancer-specific antigens for immunotherapeutic applications.

7.
Front Immunol ; 12: 593161, 2021.
Article in English | MEDLINE | ID: mdl-33717073

ABSTRACT

HPV E5 is an oncoprotein mainly expressed in premalignant lesions, which makes it an important target for a vaccine to prevent or cure cervical cancer (CC). In this study, we evaluated whether E5 targeted to DEC-205, present in dendritic cells (DCs), could induce a therapeutic protection against HPV16-induced tumor cells in a mouse model. The HPV-16 E5 (16E5) protein was cross-linked to a monoclonal antibody (mAb) specific to mouse DEC-205 (anti-DEC-205:16E5) or to an isotype control mAb (isotype:16E5). Rotavirus VP6 was cross-linked to the mouse anti-DEC-205 mAb (anti-DEC-205:VP6) as a non-specific antigen control. BALB/c mice were inoculated subcutaneously (s.c.) with the 16E5-expressing BMK-16/myc tumor cells, and 7 and 14 days later the mice were immunized s.c. with the conjugates, free 16E5 or PBS in the presence of adjuvant. Tumor growth was monitored to evaluate protection. A strong protective immune response against the tumor cells was induced when the mice were inoculated with the anti-DEC-205:16E5 conjugate, since 70% of the mice controlled the tumor growth and survived, whereas the remaining 30% developed tumors and died by day 72. In contrast, 100% of the mice in the control groups died by day 30. The anti-DEC-205:16E5 conjugate was found to induce 16E5-specific memory T cells, with a Th1/Th17 profile. Both CD4+ and CD8+ T cells contributed to the observed protection. Finally, treating mice that had developed tumors with an anti-PD-1 mAb, delayed the tumor growth for more than 20 days. These results show that targeting 16E5 to DEC-205, alone or combined with an immune checkpoint blockade, could be a promising protocol for the treatment of the early stages of HPV-associated cancer.


Subject(s)
Dendritic Cells/immunology , Human papillomavirus 16/immunology , Neoplasms/etiology , Neoplasms/therapy , Oncogene Proteins, Viral/immunology , Papillomavirus Infections/complications , Animals , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Biomarkers, Tumor , Cancer Vaccines/administration & dosage , Cancer Vaccines/immunology , Cell Line, Tumor , Dendritic Cells/metabolism , Disease Models, Animal , Female , Humans , Immunization , Immunologic Memory , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mice , Neoplasms/diagnosis , Papillomavirus Infections/virology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
8.
Front Immunol ; 11: 583382, 2020.
Article in English | MEDLINE | ID: mdl-33240271

ABSTRACT

Immunotherapy has improved the clinical response in melanoma patients, although a relevant percentage of patients still cannot be salvaged. The search for the immune populations that provide the best tumor control and that can be coaxed by immunotherapy strategies is a hot topic in cancer research nowadays. Tumor-infiltrating TCF-1+ progenitor exhausted CD8+ T cells seem to grant the best melanoma prognosis and also efficiently respond to anti-PD-1 immunotherapy, giving rise to a TIM-3+ terminally exhausted population with heightened effector activity. We tested Porins from Salmonella Typhi as a pathogen associated molecular pattern adjuvant of natural or model antigen in prophylactic and therapeutic immunization approaches against murine melanoma. Porins induced protection against melanomas, even upon re-challenging of tumor-free mice. Porins efficiently expanded IFN-γ-producing CD8+ T cells and induced central and effector memory in lymph nodes and tissue-resident (Trm) T cells in the skin and tumors. Porins induced TCF-1+ PD-1+ CD8+ Trm T cells in the tumor stroma and the presence of this population correlated with melanoma growth protection in mice. Porins immunization also cooperated with anti-PD-1 immunotherapy to hamper melanoma growth. Importantly, the potentially protective Trm populations induced by Porins in the murine model were also observed in melanoma patients in which their presence also correlated with disease control. Our data support the use of cancer vaccination to sculpt the tumor stroma with efficient and lasting Trm T cells with effector activities, highlighting the use of Porins as an adjuvant. Furthermore, our data place CD8+ Trm T cells with a progenitor exhausted phenotype as an important population for melanoma control, either independently or in cooperation with anti-PD-1 immunotherapy.


Subject(s)
Adjuvants, Immunologic/pharmacology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/immunology , Melanoma/immunology , Porins/immunology , Animals , Bacterial Proteins/immunology , Bacterial Proteins/pharmacology , CD8-Positive T-Lymphocytes/drug effects , Cancer Vaccines/pharmacology , Humans , Immune Checkpoint Inhibitors/pharmacology , Immunization , Immunologic Memory/drug effects , Immunologic Memory/immunology , Immunotherapy/methods , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Male , Mice , Mice, Inbred C57BL , Porins/pharmacology , Salmonella typhi
9.
J Leukoc Biol ; 105(5): 915-933, 2019 05.
Article in English | MEDLINE | ID: mdl-30698862

ABSTRACT

Melanoma is the deadliest form of skin cancer. Cutaneous melanomas usually originate from exposure to the mutagenic effects of ultraviolet radiation, and as such they exhibit the highest rate of somatic mutations than any other human cancer, and an extensive expression of neoantigens concurrently with a dense infiltrate of immune cells. The coexistence of high immunogenicity and high immune cell infiltration may sound contradictory for cancers carrying a gloomy outcome. However, recent studies have unveiled a variety of immunosuppressive mechanisms that often permeate the tumor microenvironment and that are responsible for tumor escaping from immunosurveillance mechanisms. Nonetheless, this particular immune profile has opened a new window of treatments based on immunotherapy that have significantly improved the clinical outcome of melanoma patients. Still, positive and complete therapy responses have been limited, and this particular cancer continues to be a major clinical challenge. The transcriptomic signatures of those patients with clinical benefit and those with progressive disease have provided a more complete picture of the universe of interactions between the tumor and the immune system. In this review, we integrate the results of the immunotherapy clinical trials to discuss a novel understanding of the mechanisms guiding cancer immunosurveillance and immunoediting. A clear notion of the cellular and molecular processes shaping how the immune system and the tumor are continuously coevolving would result in the rational design of combinatory therapies aiming to counteract the signaling pathways and cellular processes responsible for immunoescape mechanisms and provide clinical benefit to immunotherapy nonresponsive patients.


Subject(s)
Gene Expression Regulation, Neoplastic , Immunologic Surveillance/genetics , Immunotherapy/methods , Melanoma/genetics , Neoplasm Proteins/genetics , Skin Neoplasms/genetics , Antineoplastic Agents, Immunological/therapeutic use , Cell Communication/genetics , Cell Communication/immunology , Clinical Trials as Topic , Combined Modality Therapy/methods , Humans , Immunity, Innate , Immunologic Surveillance/drug effects , Melanoma/drug therapy , Melanoma/immunology , Melanoma/pathology , Neoplasm Proteins/immunology , Signal Transduction , Skin Neoplasms/drug therapy , Skin Neoplasms/immunology , Skin Neoplasms/pathology , Transcriptome/immunology , Tumor Escape/genetics , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Melanoma, Cutaneous Malignant
SELECTION OF CITATIONS
SEARCH DETAIL
...