Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(3): e2317228120, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38190523

ABSTRACT

As bees' main source of protein and lipids, pollen is critical for their development, reproduction, and health. Plant species vary considerably in the macronutrient content of their pollen, and research in bee model systems has established that this variation both modulates performance and guides floral choice. Yet, how variation in pollen chemistry shapes interactions between plants and bees in natural communities is an open question, essential for both understanding the nutritional dynamics of plant-pollinator mutualisms and informing their conservation. To fill this gap, we asked how pollen nutrition (relative protein and lipid content) sampled from 109 co-flowering plant species structured visitation patterns observed among 75 subgenera of pollen-collecting bees in the Great Basin/Eastern Sierra region (USA). We found that the degree of similarity in co-flowering plant species' pollen nutrition predicted similarity among their visitor communities, even after accounting for floral morphology and phylogeny. Consideration of pollen nutrition also shed light on the structure of this interaction network: Bee subgenera and plant genera were arranged into distinct, interconnected groups, delineated by differences in pollen macronutrient values, revealing potential nutritional niches. Importantly, variation in pollen nutrition alone (high in protein, high in lipid, or balanced) did not predict the diversity of bee visitors, indicating that plant species offering complementary pollen nutrition may be equally valuable in supporting bee diversity. Nutritional diversity should thus be a key consideration when selecting plants for habitat restoration, and a nutritionally explicit perspective is needed when considering reward systems involved in the community ecology of pollination.


Subject(s)
Magnoliopsida , Pollen , Bees , Animals , Nutritional Status , Nutrients , Compulsive Behavior , Lipids
2.
Sci Rep ; 13(1): 10606, 2023 06 30.
Article in English | MEDLINE | ID: mdl-37391495

ABSTRACT

Neonicotinoid pesticides are well-known for their sublethal effects on insect behavior and physiology. Recent work suggests neonicotinoids can impair insect olfactory processing, with potential downstream effects on behavior and possibly survival. However, it is unclear whether impairment occurs during peripheral olfactory detection, during information processing in central brain regions, or in both contexts. We used Drosophila melanogaster to explore the potential for neonicotinoids to disrupt olfaction by conducting electrophysiological analyses of single neurons and whole antennae of flies exposed to varying concentrations of the neonicotinoid imidacloprid (IMD) that were shown to cause relative differences in fly survival. Our results demonstrated that IMD exposure significantly reduced the activity of a single focal olfactory neuron and delayed the return to baseline activity of the whole antenna. To determine if IMD also impacts olfactory-guided behavior, we compared flies' relative preference for odor sources varying in ethanol content. Flies exposed to IMD had a greater relative preference for ethanol-laced pineapple juice than control flies, demonstrating that neuronal shifts induced by IMD that we observed are associated with changes in relative preference. Given the interest in the sensory impacts of agrochemical exposure on wild insect behavior and physiology, we highlight the potential of Drosophila as a tractable model for investigating the effects of pesticides at scales ranging from single-neuron physiology to olfactory-guided behavior.


Subject(s)
Drosophila , Pesticides , Animals , Drosophila melanogaster , Smell , Ethanol , Neonicotinoids/toxicity
3.
iScience ; 25(8): 104765, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35942103

ABSTRACT

Nectar chemistry can influence the behavior of pollinators in ways that affect pollen transfer, yet basic questions about how nectar chemical diversity impacts plant-pollinator relationships remain unexplored. For example, plants' capacity to produce neurotransmitters and endocrine disruptors may offer a means to manipulate pollinator behavior. We surveyed 15 plant species and discovered that two insect neurotransmitters, octopamine and tyramine, were widely distributed in floral nectar. We detected the highest concentration of these chemicals in Citrus, alongside the well-studied alkaloid caffeine. We explored the separate and interactive effects of these chemicals on insect pollinators in a series of behavioral experiments on bumblebees (Bombus impatiens). We found that octopamine and tyramine interacted with caffeine to alter key aspects of bee behavior relevant to plant fitness (sucrose responsiveness, long-term memory, and floral preferences). These results provide evidence for a means by which synergistic or antagonistic nectar chemistry might influence pollinators.

4.
Trends Ecol Evol ; 37(10): 899-910, 2022 10.
Article in English | MEDLINE | ID: mdl-35872026

ABSTRACT

Infectious disease is linked to impaired cognition across a breadth of host taxa and cognitive abilities, potentially contributing to variation in cognitive performance within and among populations. Impaired cognitive performance can stem from direct damage by the parasite, the host immune response, or lost opportunities for learning. Moreover, cognitive impairment could be compounded by factors that simultaneously increase infection risk and impair cognition directly, such as stress and malnutrition. As highlighted in this review, however, answers to fundamental questions remain unresolved, including the frequency, duration, and fitness consequences of infection-linked cognitive impairment in wild animal populations, the cognitive abilities most likely to be affected, and the potential for adaptive evolution of cognition in response to accelerating emergence of infectious disease.


Subject(s)
Cognition , Communicable Diseases , Animals , Animals, Wild , Cognition/physiology , Communicable Diseases/veterinary
5.
Oecologia ; 196(4): 963-976, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34250559

ABSTRACT

Animals develop food preferences based on taste, nutritional quality and to avoid environmental toxins. Yet, measuring preferences in an experimental setting can be challenging since ecologically realistic assays can be time consuming, while simplified assays may not capture natural sampling behavior. Field realism is a particular challenge when studying behavioral responses to environmental toxins in lab-based assays, given that toxins can themselves impact sampling behavior, masking our ability to detect preferences. We address these challenges by comparing different experimental methods for measuring sucrose concentration preference in bumble bees (Bombus impatiens), evaluating the utility of two preference chamber-based methods (ad libitum versus a novel restricted-sampling assay) in replicating bees' preferences when they fly freely between artificial flowers in a foraging arena. We find that the restricted-sampling method matched a free-flying scenario more closely than the ad libitum protocol, and we advocate for expanded use of this approach, given its ease of implementation. We then performed a second experiment using the new protocol to ask whether consuming the neonicotinoid pesticide imidacloprid, known to suppress feeding motivation, interfered with the expression of sucrose preferences. After consuming imidacloprid, bees were less likely to choose the higher-quality sucrose even as they gained experience with both options. Thus, we provide evidence that pesticides interfere with bees' ability to discriminate between floral rewards that differ in value. This work highlights a simple protocol for assessing realistic foraging preferences in bees and provides an efficient way for researchers to measure the impacts of anthropogenic factors on preference expression.


Subject(s)
Insecticides , Sucrose , Animals , Bees , Feeding Behavior , Laboratories , Neonicotinoids
6.
Curr Opin Insect Sci ; 44: 16-22, 2021 04.
Article in English | MEDLINE | ID: mdl-33075580

ABSTRACT

Pollinator foraging decisions shape microbial dispersal, and microbes change floral phenotypes in ways perceivable by pollinators. Yet, the role microbes play in the cognitive ecology of pollination is relatively unexplored. Reviewing recent literature on floral microbial ecology and pollinator behavior, we advocate for further integration between these two fields. Insights into pollinator learning, memory, and decision-making can help explain their responses to microbially-altered floral phenotypes. Specifically, considering how pollinators forage for multiple nutrients, cope with uncertainty, structure foraging bouts, and move through their environment could inform predictions about microbial dispersal within plant communities. We highlight how behavior connects microbial changes in floral phenotype to downstream effects on both microbial dispersal and plant fitness.


Subject(s)
Behavior, Animal , Flowers/microbiology , Pollination , Animals
7.
R Soc Open Sci ; 7(5): 191883, 2020 May.
Article in English | MEDLINE | ID: mdl-32537195

ABSTRACT

Neonicotinoid pesticides can have a multitude of negative sublethal effects on bees. Understanding their impact on wild populations requires accurately estimating the dosages bees encounter under natural conditions. This is complicated by the possibility that bees might influence their own exposure: two recent studies found that bumblebees (Bombus terrestris) preferentially consumed neonicotinoid-contaminated nectar, even though these chemicals are thought to be tasteless and odourless. Here, we used Bombus impatiens to explore two elements of these reported preferences, with the aim of understanding their ecological implication and underlying mechanism. First, we asked whether preferences persisted across a range of realistic nectar sugar concentrations, when measured at a series of time points up until 24 h. Second, we tested whether bees' neonicotinoid preferences were driven by an ability to associate their post-ingestive consequences with floral stimuli such as colour, location or scent. We found no evidence that foragers preferred to consume neonicotinoid-containing solutions, despite finding effects on feeding motivation and locomotor activity in line with previous work. Bees also did not preferentially visit floral stimuli previously paired with a neonicotinoid-containing solution. These results highlight the need for further research into the mechanisms underlying bees' responses to these pesticides, critical for determining how neonicotinoid-driven foraging preferences might operate in the real world for different bee species.

8.
J Exp Biol ; 223(Pt 10)2020 05 18.
Article in English | MEDLINE | ID: mdl-32321753

ABSTRACT

Similar to animal communication displays, flowers emit complex signals that attract pollinators. Signal complexity could lead to higher cognitive load for pollinators, impairing performance, or might benefit them by facilitating learning, memory and decision making. Here, we evaluated learning and memory in foragers of the bumble bee Bombus impatiens trained to simple (unimodal) versus complex (bimodal) signals under restrained conditions. Use of a proboscis extension response protocol enabled us to control the timing and duration of stimuli presented during absolute and differential learning tasks. Overall, we observed broad variation in performance under the two conditions, with bees trained to compound bimodal signals learning and remembering as well as, better than or more poorly than bees trained to unimodal signals. Interestingly, the outcome of training was affected by the specific colour-odour combination. Among unimodal stimuli, the performance with odour stimuli was higher than with colour stimuli, suggesting that olfactory signals played a more significant role in the compound bimodal condition. This was supported by the fact that after 24 h, most bimodal-treatment bees responded to odour but not visual stimuli. We did not observe differences in latency of response, suggesting that signal composition affected decision accuracy, not speed. We conclude that restrained bumble bee workers exhibit broad variation of responses to bimodal stimuli and that components of the bimodal signal may not be used equivalently. The analysis of bee performance under restrained conditions enables accurate control of the multimodal stimuli provided to individuals and to study the interaction of individual components within a compound.


Subject(s)
Learning , Smell , Animals , Bees , Flowers , Odorants
9.
Insects ; 11(2)2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32085627

ABSTRACT

Pollinator nutritional ecology provides insights into plant-pollinator interactions, coevolution, and the restoration of declining pollinator populations. Bees obtain their protein and lipid nutrient intake from pollen, which is essential for larval growth and development as well as adult health and reproduction. Our previous research revealed that pollen protein to lipid ratios (P:L) shape bumble bee foraging preferences among pollen host-plant species, and these preferred ratios link to bumble bee colony health and fitness. Yet, we are still in the early stages of integrating data on P:L ratios across plant and bee species. Here, using a standard laboratory protocol, we present over 80 plant species' protein and lipid concentrations and P:L values, and we evaluate the P:L ratios of pollen collected by three bee species. We discuss the general phylogenetic, phenotypic, behavioral, and ecological trends observed in these P:L ratios that may drive plant-pollinator interactions; we also present future research questions to further strengthen the field of pollination nutritional ecology. This dataset provides a foundation for researchers studying the nutritional drivers of plant-pollinator interactions as well as for stakeholders developing planting schemes to best support pollinators.

10.
Biol Lett ; 15(7): 20190359, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31362607

ABSTRACT

Neonicotinoid pesticides can impair bees' ability to learn and remember information about flowers, critical for effective foraging. Although these effects on cognition may contribute to broader effects on health and performance, to date they have largely been assayed in simplified protocols that consider learning in a single sensory modality, usually olfaction. Given that real flowers display a variety of potentially useful signals, we assessed the effects of acute neonicotinoid exposure on multimodal learning in free-flying bumblebees. We found that neonicotinoid consumption differentially impacted learning of floral stimuli, impairing scent, but not colour, learning. These findings raise questions about the mechanisms by which pesticides might differentially impair sensory systems, with implications for how neonicotinoids affect multiple aspects of bee ecology.


Subject(s)
Insecticides , Pesticides , Animals , Bees , Flowers , Learning , Neonicotinoids , Nitro Compounds
11.
Curr Biol ; 29(14): R679-R680, 2019 07 22.
Article in English | MEDLINE | ID: mdl-31336081

ABSTRACT

Plants often compete in a marketplace that involves the exchange of floral rewards for pollination service [1]. This marketplace is frequently viewed as revolving around a single currency, typically nectar. While this focus has established pollinators such as bees as classic models in foraging ecology, in reality many plants provide both pollen and nectar, which vary in composition within and across species [2]. How this complexity impacts interactions between plants, pollinators, and co-flowering competitors is unknown. We explored how variation in two axes of reward chemistry - nectar sugar and pollen alkaloid content - impacted competition for bumblebee visits. The effect of variation in one reward depended on the presence and quality of the other - bees discriminated against flowers with more defended pollen when all flowers offered the same quality nectar. However, bees preferred flowers with highly defended pollen when they offered higher quality nectar, suggesting that attractive nectar can overcome the ecological costs of defended pollen. Recognizing the interdependence of these floral currencies may help identify traits that drive indirect interactions between plants and clarify broader evolutionary patterns of floral reward phenotypes.


Subject(s)
Alkaloids/metabolism , Bees/physiology , Plant Nectar/chemistry , Pollen/chemistry , Sugars/metabolism , Animals , Flowers/chemistry , Pollination , Reward
12.
Biol Lett ; 12(7)2016 Jul.
Article in English | MEDLINE | ID: mdl-27405383

ABSTRACT

Pollen plays a dual role as both a gametophyte and a nutritional reward for pollinators. Although pollen chemistry varies across plant species, its functional significance in pollination has remained obscure, in part because little is known about how floral visitors assess it. Bees rely on pollen for protein, but whether foragers evaluate its chemistry is unclear, as it is primarily consumed by larvae. We asked whether the chemical composition of pollen influences bumblebees' foraging behaviour. Using putatively sweet and bitter pollen blends, we found that chemical composition influenced two aspects of bee behaviour relevant to plant fitness: the amount of pollen collected and the likelihood of subsequently visiting a visually similar flower. These findings offer a new perspective on the nutritional ecology of plant-pollinator interactions, as they show that pollen's taste may mediate its collection and transfer.


Subject(s)
Bees/physiology , Pollen , Animals , Appetitive Behavior , Cellulose , Color , Flowers , Prunus avium , Quinine , Sucrose , Taste , Temperature
13.
PLoS One ; 10(11): e0142496, 2015.
Article in English | MEDLINE | ID: mdl-26545106

ABSTRACT

The impact of consuming biologically active compounds is often dose-dependent, where small quantities can be medicinal while larger doses are toxic. The consumption of plant secondary compounds can be toxic to herbivores in large doses, but can also improve survival in parasitized herbivores. In addition, recent studies have found that consuming nectar secondary compounds may decrease parasite loads in pollinators. However, the effect of compound dose on bee survival and parasite loads has not been assessed. To determine how secondary compound consumption affects survival and pathogen load in Bombus impatiens, we manipulated the presence of a common gut parasite, Crithidia bombi, and dietary concentration of anabasine, a nectar alkaloid produced by Nicotiana spp. using four concentrations naturally observed in floral nectar. We hypothesized that increased consumption of secondary compounds at concentrations found in nature would decrease survival of uninfected bees, but improve survival and ameliorate parasite loads in infected bees. We found medicinal effects of anabasine in infected bees; the high-anabasine diet decreased parasite loads and increased the probability of clearing the infection entirely. However, survival time was not affected by any level of anabasine concentration, or by interactive effects of anabasine concentration and infection. Crithidia infection reduced survival time by more than two days, but this effect was not significant. Our results support a medicinal role for anabasine at the highest concentration; moreover, we found no evidence for a survival-related cost of anabasine consumption across the concentration range found in nectar. Our results suggest that consuming anabasine at the higher levels of the natural range could reduce or clear pathogen loads without incurring costs for healthy bees.


Subject(s)
Anabasine/administration & dosage , Bees/drug effects , Bees/parasitology , Plant Nectar/administration & dosage , Animals , Crithidia/drug effects , Crithidia/pathogenicity , Dose-Response Relationship, Drug , Herbivory/drug effects , Host-Parasite Interactions/drug effects , Parasite Load , Plant Nectar/chemistry , Plants, Medicinal/chemistry , Nicotiana/chemistry
15.
Biol Lett ; 11(9): 20150628, 2015 09.
Article in English | MEDLINE | ID: mdl-26423070

ABSTRACT

Bees are model organisms for the study of learning and memory, yet nearly all such research to date has used a single reward, nectar. Many bees collect both nectar (carbohydrates) and pollen (protein) on a single foraging bout, sometimes from different plant species. We tested whether individual bumblebees could learn colour associations with nectar and pollen rewards simultaneously in a foraging scenario where one floral type offered only nectar and the other only pollen. We found that bees readily learned multiple reward-colour associations, and when presented with novel floral targets generalized to colours similar to those trained for each reward type. These results expand the ecological significance of work on bee learning and raise new questions regarding the cognitive ecology of pollination.


Subject(s)
Bees/physiology , Color , Learning , Plant Nectar , Pollen , Animals , Choice Behavior , Cues , Feeding Behavior , Reward
16.
Proc Biol Sci ; 282(1803): 20142471, 2015 Mar 22.
Article in English | MEDLINE | ID: mdl-25694627

ABSTRACT

The synthesis of secondary metabolites is a hallmark of plant defence against herbivores. These compounds may be detrimental to consumers, but can also protect herbivores against parasites. Floral nectar commonly contains secondary metabolites, but little is known about the impacts of nectar chemistry on pollinators, including bees. We hypothesized that nectar secondary metabolites could reduce bee parasite infection. We inoculated individual bumblebees with Crithidia bombi, an intestinal parasite, and tested effects of eight naturally occurring nectar chemicals on parasite population growth. Secondary metabolites strongly reduced parasite load, with significant effects of alkaloids, terpenoids and iridoid glycosides ranging from 61 to 81%. Using microcolonies, we also investigated costs and benefits of consuming anabasine, the compound with the strongest effect on parasites, in infected and uninfected bees. Anabasine increased time to egg laying, and Crithidia reduced bee survival. However, anabasine consumption did not mitigate the negative effects of Crithidia, and Crithidia infection did not alter anabasine consumption. Our novel results highlight that although secondary metabolites may not rescue survival in infected bees, they may play a vital role in mediating Crithidia transmission within and between colonies by reducing Crithidia infection intensities.


Subject(s)
Alkaloids , Bees/parasitology , Crithidia , Glycosides , Plant Nectar/chemistry , Terpenes , Anabasine , Animals , Bees/physiology , Disease Resistance , Host-Parasite Interactions , Secondary Metabolism
17.
Article in English | MEDLINE | ID: mdl-24710696

ABSTRACT

Karl von Frisch's studies of bees' color vision and chemical senses opened a window into the perceptual world of a species other than our own. A century of subsequent research on bees' visual and olfactory systems has developed along two productive but independent trajectories, leaving the questions of how and why bees use these two senses in concert largely unexplored. Given current interest in multimodal communication and recently discovered interplay between olfaction and vision in humans and Drosophila, understanding multisensory integration in bees is an opportunity to advance knowledge across fields. Using a classic ethological framework, we formulate proximate and ultimate perspectives on bees' use of multisensory stimuli. We discuss interactions between scent and color in the context of bee cognition and perception, focusing on mechanistic and functional approaches, and we highlight opportunities to further explore the development and evolution of multisensory integration. We argue that although the visual and olfactory worlds of bees are perhaps the best-studied of any non-human species, research focusing on the interactions between these two sensory modalities is vitally needed.


Subject(s)
Bees/physiology , Color Perception/physiology , Flowers/chemistry , Signal Detection, Psychological/physiology , Smell/physiology , Vision, Ocular/physiology , Afferent Pathways/physiology , Animals , Brain/physiology , Cognition/physiology , Humans
18.
Brain Behav Evol ; 82(4): 250-61, 2013.
Article in English | MEDLINE | ID: mdl-24281415

ABSTRACT

The environment experienced during development can dramatically affect the brain, with possible implications for sensory processing, learning, and memory. Although the effects of single sensory modalities on brain development have been repeatedly explored, the additive or interactive effects of multiple modalities have been less thoroughly investigated. We asked how experience with multisensory stimuli affected brain development in the bumblebee Bombus impatiens. First, to establish the timeline of brain development during early adulthood, we estimated regional brain volumes across a range of ages. We discovered significant age-related volume changes in nearly every region of the brain. Next, to determine whether these changes were dependent upon certain environmental stimuli, we manipulated the visual and olfactory stimuli available to newly emerged bumblebee workers in a factorial manner. Newly emerged bumblebees were maintained in the presence or absence of supplemental visual and/or olfactory stimuli for 7 days, after which the volumes of several brain regions were estimated. We found that the volumes of the mushroom body lobes and calyces were larger in the absence of visual stimuli. Additionally, visual deprivation was associated with the expression of larger antennal lobes, the primary olfactory processing regions of the brain. In contrast, exposure to plant-derived olfactory stimuli did not have a significant effect on brain region volumes. This study is the first to explore the separate and interactive effects of visual and olfactory stimuli on bee brain development. Assessing the timing and sensitivity of brain development is a first step toward understanding how different rearing environments differentially affect regional brain volumes in this species. Our findings suggest that environmental factors experienced during the first week of adulthood can modify bumblebee brain development in many subtle ways.


Subject(s)
Bees/growth & development , Housing, Animal , Neuronal Plasticity , Animals , Brain/growth & development , Mushroom Bodies/growth & development , Organ Size , Physical Stimulation , Smell , Vision, Ocular
19.
PLoS One ; 8(2): e55914, 2013.
Article in English | MEDLINE | ID: mdl-23418475

ABSTRACT

Floral displays are under selection to both attract pollinators and deter antagonists. Here we show that a common floral trait, a nectar guide pattern, alters the behavior of bees that can act opportunistically as both pollinators and as antagonists. Generally, bees access nectar via the floral limb, transporting pollen through contact with the plant's reproductive structures; however bees sometimes extract nectar from a hole in the side of the flower that they or other floral visitors create. This behavior is called "nectar robbing" because bees may acquire the nectar without transporting pollen. We asked whether the presence of a symmetric floral nectar guide pattern on artificial flowers affected bumble bees' (Bombus impatiens) propensity to rob or access nectar "legitimately." We discovered that nectar guides made legitimate visits more efficient for bees than robbing, and increased the relative frequency of legitimate visits, compared to flowers lacking nectar guides. This study is the first to show that beyond speeding nectar discovery, a nectar guide pattern can influence bees' flower handling in a way that could benefit the plant.


Subject(s)
Bees/physiology , Behavior, Animal/physiology , Flowers , Plant Nectar , Animals , Learning , Pollination
20.
J Exp Biol ; 214(Pt 1): 113-21, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21147975

ABSTRACT

Plants often attract pollinators with floral displays composed of visual, olfactory, tactile and gustatory stimuli. Since pollinators' responses to each of these stimuli are usually studied independently, the question of why plants produce multi-component floral displays remains relatively unexplored. Here we used signal detection theory to test the hypothesis that complex displays reduce a pollinator's uncertainty about the floral signal. Specifically, we asked whether one component of the floral display, scent, improved a bee's certainty about the value of another component, color hue. We first trained two groups of bumble bees (Bombus impatiens Cresson) to discriminate between rewarding and unrewarding artificial flowers of slightly different hues in the presence vs absence of scent. In a test phase, we presented these bees with a gradient of floral hues and assessed their ability to identify the hue rewarded during training. We interpreted the extent to which bees' preferences were biased away from the unrewarding hue ('peak shift') as an indicator of uncertainty in color discrimination. Our data show that the presence of an olfactory signal reduces uncertainty regarding color: not only was color learning facilitated on scented flowers but also bees showed a lower amount of peak shift in the presence of scent. We explore potential mechanisms by which scent might reduce uncertainty about color, and discuss the broader significance of our results for our understanding of signal evolution.


Subject(s)
Bees/physiology , Flowers/anatomy & histology , Flowers/chemistry , Pollination/physiology , Signal Detection, Psychological/physiology , Smell/physiology , Uncertainty , Animals , Color , Learning/physiology , Michigan , Odorants
SELECTION OF CITATIONS
SEARCH DETAIL
...