Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 6(3): 2165-73, 2012 Mar 27.
Article in English | MEDLINE | ID: mdl-22324937

ABSTRACT

We have observed a nearly 4-fold increase in the electron spin resonance (ESR) signal from an ensemble of single-walled carbon nanotubes (SWCNTs) due to oxygen desorption. By performing temperature-dependent ESR spectroscopy both before and after thermal annealing, we found that the ESR in SWCNTs can be reversibly altered via the molecular oxygen content in the samples. Independent of the presence of adsorbed oxygen, a Curie law (spin susceptibility ∝ 1/T) is seen from ~4 to 300 K, indicating that the probed spins are finite-level species. For both the pre-annealed and post-annealed sample conditions, the ESR line width decreased as the temperature was increased, a phenomenon we identify as motional narrowing. From the temperature dependence of the line width, we extracted an estimate of the intertube hopping energy; for both sample conditions, we found this hopping energy to be ~1.2 meV. Since the spin hopping energy changes only slightly when oxygen is desorbed, we conclude that only the spin susceptibility, not spin transport, is affected by the presence of physisorbed molecular oxygen in SWCNT ensembles. Surprisingly, no line width change is observed when the amount of oxygen in the SWCNT sample is altered, contrary to other carbonaceous systems and certain 1D conducting polymers. We hypothesize that physisorbed molecular oxygen acts as an acceptor (p-type), compensating the donor-like (n-type) defects that are responsible for the ESR signal in bulk SWCNTs.


Subject(s)
Nanotubes, Carbon/chemistry , Oxygen/chemistry , Adsorption , Electron Spin Resonance Spectroscopy , Motion , Temperature
2.
ACS Nano ; 4(8): 4621-36, 2010 Aug 24.
Article in English | MEDLINE | ID: mdl-20681596

ABSTRACT

Many new drugs have low aqueous solubility and high therapeutic efficacy. Paclitaxel (PTX) is a classic example of this type of compound. Here we show that extremely small (<40 nm) hydrophilic carbon clusters (HCCs) that are PEGylated (PEG-HCCs) are effective drug delivery vehicles when simply mixed with paclitaxel. This formulation of PTX sequestered in PEG-HCCs (PTX/PEG-HCCs) is stable for at least 20 weeks. The PTX/PEG-HCCs formulation was as effective as PTX in a clinical formulation in reducing tumor volumes in an orthotopic murine model of oral squamous cell carcinoma. Preliminary toxicity and biodistribution studies suggest that the PEG-HCCs are not acutely toxic and, like many other nanomaterials, are primarily accumulated in the liver and spleen. This work demonstrates that carbon nanomaterials are effective drug delivery vehicles in vivo when noncovalently loaded with an unmodified drug.


Subject(s)
Carbon/chemistry , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Nanostructures/administration & dosage , Nanostructures/chemistry , Paclitaxel/administration & dosage , Paclitaxel/chemistry , Animals , Cell Line, Tumor , Drug Carriers/administration & dosage , Drug Carriers/toxicity , Drug Stability , Humans , Hydrophobic and Hydrophilic Interactions , Male , Mice , Mice, Inbred BALB C , Nanostructures/toxicity , Particle Size , Polyethylene Glycols/chemistry , Tissue Distribution
3.
ACS Nano ; 4(6): 3063-72, 2010 Jun 22.
Article in English | MEDLINE | ID: mdl-20521799

ABSTRACT

We study the solubility and dispersibility of as-produced and purified HiPco single-walled carbon nanotubes (SWNTs). Variation in specific operating conditions of the HiPco process are found to lead to significant differences in the respective SWNT solubilities in oleum and surfactant suspensions. The diameter distributions of SWNTs dispersed in surfactant solutions are batch-dependent, as evidenced by luminescence and Raman spectroscopies, but are identical for metallic and semiconducting SWNTs within a batch. We thus find that small diameter SWNTs disperse at higher concentration in aqueous surfactants and dissolve at higher concentration in oleum than do large-diameter SWNTs. These results highlight the importance of controlling SWNT synthesis methods in order to optimize processes dependent on solubility, including macroscopic processing such as fiber spinning, material reinforcement, and films production, as well as for fundamental research in type selective chemistry, optoelectronics, and nanophotonics.


Subject(s)
Crystallization/methods , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Surface-Active Agents/chemistry , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Solubility , Surface Properties
4.
J Am Chem Soc ; 131(11): 3934-41, 2009 Mar 25.
Article in English | MEDLINE | ID: mdl-19243186

ABSTRACT

Single-walled carbon nanotubes (SWCNTs) and ultrashort SWCNTs (US-SWCNTs) were functionalized with derivatives of the phenolic antioxidant, butylated hydroxytoluene (BHT). By using the oxygen radical absorbance capacity (ORAC) assay, the oxygen radical scavenging ability of the SWCNT antioxidants is nearly 40 times greater than that of the radioprotective dendritic fullerene, DF-1. In addition, ORAC results revealed two divergent trends in the antioxidant potential of SWCNTs, depending on the type of functionalization employed. When existing pendant sites on US-SWCNTs were further functionalized by either covalent or noncovalent interactions of the existing pendant sites with a BHT derivative, the amount of BHT-derivative loading proportionately increased the overall antioxidant activity. If, however, functionalization occurred via covalent functionalization of a BHT-derivative directly to the SWCNT sidewall, the amount of BHT-derivative loading was inversely proportional to the overall antioxidant activity. Therefore, increasing the number of pendant sites on the SWCNT sidewalls by covalent functionalization led to a concomitant reduction in ORAC activity, suggesting that the nanotube itself is a better radical scavenger than the BHT-derivatized SWCNT. Cytotoxicity assays showed that both nonfunctionalized and BHT-derivatized SWCNTs have little or no deleterious effect on cell viability. Therefore, SWCNTs may be attractive agents for antioxidant materials and medical therapeutics research.


Subject(s)
Antioxidants/chemistry , Butylated Hydroxytoluene/chemistry , Nanotubes, Carbon/chemistry , Animals , Biocompatible Materials/chemistry , Cell Survival/drug effects , Free Radical Scavengers , Humans , Reactive Oxygen Species
5.
J Am Chem Soc ; 131(2): 723-8, 2009 Jan 21.
Article in English | MEDLINE | ID: mdl-19102650

ABSTRACT

Single-walled carbon nanotube (SWCNT) fibers were engineered to become a scaffold for the storage of hydrogen. Carbon nanotube fibers were swollen in oleum (fuming sulfuric acid), and organic spacer groups were covalently linked between the nanotubes using diazonium functionalization chemistry to provide 3-dimensional (3-D) frameworks for the adsorption of hydrogen molecules. These 3-D nanoengineered fibers physisorb twice as much hydrogen per unit surface area as do typical macroporous carbon materials. These fiber-based systems can have high density, and combined with the outstanding thermal conductivity of carbon nanotubes, this points a way toward solving the volumetric and heat-transfer constraints that limit some other hydrogen-storage supports.

6.
Nat Nanotechnol ; 3(3): 151-7, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18654487

ABSTRACT

Many nanosized particulate systems are being developed as intravascular carriers to increase the levels of therapeutic agents delivered to targets, with the fewest side effects. The surface of these carriers is often functionalized with biological recognition molecules for specific, targeted delivery. However, there are a series of biological barriers in the body that prevent these carriers from localizing at their targets at sufficiently high therapeutic concentrations. Here we show a multistage delivery system that can carry, release over time and deliver two types of nanoparticles into primary endothelial cells. The multistage delivery system is based on biodegradable and biocompatible mesoporous silicon particles that have well-controlled shapes, sizes and pores. The use of this system is envisioned to open new avenues for avoiding biological barriers and delivering more than one therapeutic agent to the target at a time, in a time-controlled fashion.


Subject(s)
Contrast Media , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Endothelial Cells/metabolism , Nanoparticles/therapeutic use , Silicon/pharmacokinetics , Cells, Cultured , Humans , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...