Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
2.
Sci Rep ; 14(1): 6238, 2024 03 14.
Article in English | MEDLINE | ID: mdl-38485975

ABSTRACT

This study evaluated the tolerability and efficacy of the topical rho-kinase inhibitor netarsudil for canine primary corneal endothelial degeneration (PCED). Twenty-six eyes of 21 client-owned dogs with PCED were enrolled in a prospective, randomized, vehicle control clinical trial and received topical netarsudil 0.02% (Rhopressa®) or vehicle control twice daily (BID) for the first 4 months. Then, all patients received netarsudil for the next 4 or 8 months. Complete ophthalmic examination, ultrasonic pachymetry, Fourier-domain optical coherence tomography, and in vivo confocal microscopy were performed at baseline and 1, 2, 4, 6, 8 and 12 months. Effect of netarsudil on central corneal thickness (CCT), percentage of cornea with edema, and endothelial cell density (ECD) were evaluated by repeated measures ANOVA. Kaplan-Meier curves and log-rank test were used to compare corneal edema and clinical progression of eyes in netarsudil versus vehicle control groups. All dogs developed conjunctival hyperemia in at least one eye while receiving netarsudil. Unilateral transient reticulated intraepithelial bullae and stromal hemorrhage were observed respectively in 2 dogs in the netarsudil group. Two dogs showed persistently decreased tear production while receiving netarsudil, requiring topical immunomodulatory treatment. No significant differences in CCT, ECD, corneal edema or clinical progression were observed between netarsudil or vehicle treated eyes. When comparing efficacy of topical netarsudil BID and topical ripasudil 0.4% administered four times daily from our previous study, dogs receiving ripasudil had significantly less progression than those receiving netarsudil.


Subject(s)
Benzoates , Corneal Dystrophies, Hereditary , Corneal Edema , Isoquinolines , Sulfonamides , beta-Alanine , Animals , Dogs , beta-Alanine/analogs & derivatives , Corneal Edema/drug therapy , Disease Progression , Ophthalmic Solutions/therapeutic use , Prospective Studies
3.
Prog Retin Eye Res ; 99: 101234, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38176611

ABSTRACT

The cornea, as a dynamic and responsive tissue, constantly interacts with mechanical forces in order to maintain its structural integrity, barrier function, transparency and refractive power. Cells within the cornea sense and respond to various mechanical forces that fundamentally regulate their morphology and fate in development, homeostasis and pathophysiology. Corneal cells also dynamically regulate their extracellular matrix (ECM) with ensuing cell-ECM crosstalk as the matrix serves as a dynamic signaling reservoir providing biophysical and biochemical cues to corneal cells. Here we provide an overview of mechanotransduction signaling pathways then delve into the recent advances in corneal mechanobiology, focusing on the interplay between mechanical forces and responses of the corneal epithelial, stromal, and endothelial cells. We also identify species-specific differences in corneal biomechanics and mechanotransduction to facilitate identification of optimal animal models to study corneal wound healing, disease, and novel therapeutic interventions. Finally, we identify key knowledge gaps and therapeutic opportunities in corneal mechanobiology that are pressing for the research community to address especially pertinent within the domains of limbal stem cell deficiency, keratoconus and Fuchs' endothelial corneal dystrophy. By furthering our understanding corneal mechanobiology, we can contextualize discoveries regarding corneal diseases as well as innovative treatments for them.


Subject(s)
Fuchs' Endothelial Dystrophy , Keratoconus , Animals , Mechanotransduction, Cellular , Endothelial Cells , Cornea/physiology
4.
Transl Vis Sci Technol ; 12(11): 24, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37982768

ABSTRACT

Purpose: This systematic review evaluates the safety and efficacy of ocular gene therapy using adeno-associated virus (AAV). Methods: MEDLINE, Embase, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov were searched systematically for controlled or non-controlled interventional gene therapy studies using key words related to retinal diseases, gene therapy, and AAV vectors. The primary outcome measure was safety, based on ocular severe adverse events (SAEs). Secondary outcome measures evaluated efficacy of the therapy based on best corrected visual acuity (BCVA) and improvements in visual sensitivity and systemic involvement following ocular delivery. Pooling was done using a DerSimonian Laird random effects model. Risk of bias was assessed using the Cochrane Risk of Bias Tool, version 1. Results: Our search identified 3548 records. Of these, 80 publications met eligibility criteria, representing 28 registered clinical trials and 5 postmarket surveillance studies involving AAV gene therapy for Leber congenital amaurosis (LCA), choroideremia, Leber hereditary optic neuropathy (LHON), age-related macular degeneration (AMD), retinitis pigmentosa (RP), X-linked retinoschisis, and achromatopsia. Overall, AAV therapy vectors were associated with a cumulative incidence of at least one SAE of 8% (95% confidence intervals [CIs] of 5% to 12%). SAEs were often associated with the surgical procedure rather than the therapeutic vector itself. Poor or inconsistent reporting of adverse events (AEs) were a limitation for the meta-analysis. The proportion of patients with any improvement in BCVA and visual sensitivity was 41% (95% CIs of 31% to 51%) and 51% (95% CIs of 31% to 70%), respectively. Systemic immune involvement was associated with a cumulative incidence of 31% (95% CI = 21% to 42%). Conclusions: AAV gene therapy vectors appear to be safe but the surgical procedure required to deliver them is associated with some risk. The large variability in efficacy can be attributed to the small number of patients treated, the heterogeneity of the population and the variability in dosage, volume, and follow-up. Translational Relevance: This systematic review will help to inform and guide future clinical trials.


Subject(s)
Macular Degeneration , Retinal Degeneration , Retinitis Pigmentosa , Humans , Retinal Degeneration/therapy , Dependovirus/genetics , Macular Degeneration/drug therapy , Genetic Therapy/adverse effects
5.
J Vet Intern Med ; 37(3): 1179-1185, 2023.
Article in English | MEDLINE | ID: mdl-37134072

ABSTRACT

Sibling female and male Chihuahuas were evaluated for a 9-month history of tachypnea that failed to respond to fenbendazole, doxycycline, amoxicillin-clavulanate, and prednisone. Physical examination identified tachypnea, hyperpnea, and harsh bronchovesicular lung sounds. Fundic examination disclosed diffuse chorioretinitis, manifested as multifocal chorioretinal granulomas in the female dog and occasional chorioretinal scars in the male dog. Thoracic radiographs indicated moderate to severe interstitial to broncho-interstitial infiltrates in both dogs. Serum and urine antigen and antibody testing in the female dog failed to identify infectious agents, but cytologic assessment of hepatic lymph node, liver, and splenic aspirates identified Pneumocystis trophozoites. Infection was confirmed in both dogs by 28S rRNA PCR sequencing from multiple tissue samples. The female dog responded well to trimethoprim-sulfamethoxazole, but the male dog was euthanized because of liver failure, presumably related to antimicrobial treatment.


Subject(s)
Anti-Infective Agents , Dog Diseases , Pneumonia, Pneumocystis , Male , Female , Dogs , Animals , Humans , Pneumonia, Pneumocystis/veterinary , Siblings , Prednisone , Tachypnea/veterinary , Dog Diseases/diagnosis , Dog Diseases/drug therapy
7.
Invest Ophthalmol Vis Sci ; 64(4): 22, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37074694

ABSTRACT

Purpose: We sought to define the role of Wwtr1 in murine ocular structure and function and determine the role of mechanotransduction in Fuchs' endothelial corneal dystrophy (FECD), with emphasis on interactions between corneal endothelial cells (CEnCs) and Descemet's membrane (DM). Methods: A Wwtr1 deficient mouse colony was established, and advanced ocular imaging, atomic force microscope (AFM), and histology/immunofluorescence were performed. Corneal endothelial wound healing was assessed using cryoinjury and phototherapeutic keratectomy in Wwtr1 deficient mice. Expression of WWTR1/TAZ was determined in the corneal endothelium from normal and FECD-affected patients; WWTR1 was screened for coding sequence variants in this FECD cohort. Results: Mice deficient in Wwtr1 had reduced CEnC density, abnormal CEnC morphology, softer DM, and thinner corneas versus wildtype controls by 2 months of age. Additionally, CEnCs had altered expression and localization of Na/K-ATPase and ZO-1. Further, Wwtr1 deficient mice had impaired CEnC wound healing. The WWTR1 transcript was highly expressed in healthy human CEnCs comparable to other genes implicated in FECD pathogenesis. Although WWTR1 mRNA expression was comparable between healthy and FECD-affected patients, WWTR1/TAZ protein concentrations were higher and localized to the nucleus surrounding guttae. No genetic associations were found in WWTR1 and FECD in a patient cohort compared to controls. Conclusions: There are common phenotypic abnormalities seen between Wwtr1 deficient and FECD-affected patients, suggesting that Wwtr1 deficient mice could function as a murine model of late-onset FECD. Despite the lack of a genetic association between FECD and WWTR1, aberrant WWTR1/TAZ protein subcellular localization and degradation may play critical roles in the pathogenesis of FECD.


Subject(s)
Endothelial Cells , Fuchs' Endothelial Dystrophy , Humans , Mice , Animals , Endothelial Cells/metabolism , Mechanotransduction, Cellular , Fuchs' Endothelial Dystrophy/pathology , Endothelium, Corneal/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Adaptor Proteins, Signal Transducing/metabolism
8.
Exp Eye Res ; 229: 109419, 2023 04.
Article in English | MEDLINE | ID: mdl-36806671

ABSTRACT

Graphene-based nanomaterials (GBNs) are widely used due to their chemical and physical properties for multiple commercial and environmental applications. From an occupational health perspective, there is concern regarding the effects of inhalation on the respiratory system, and many studies have been conducted to study inhalation impacts on lung. Similar to the respiratory system, the eyes may also be exposed to GBNs and thus impacted. In this study, immortalized human corneal epithelial (hTCEpi) cells and rabbit corneal fibroblasts (RCFs) were used to investigate the toxicity of eight types of GBN: graphene oxide (GO; 400 nm), GO (1 µm), partially reduced graphene oxide (PRGO; 400 nm), reduced graphene oxide (RGO; 400 nm), RGO (2 µm), graphene (110 nm), graphene (140 nm), and graphene (1 µm). We next examined the effects of these GBNs on hTCEpi cell migration. We also determined whether the expression of α-smooth muscle actin (αSMA), a myofibroblast marker, is altered by the GBNs using RCFs. We found that RGO (400 nm) and RGO (2 µm) were highly toxic to hTCEPi cells and RCFs meanwhile, PRGO (400 nm) was toxic only to hTCEpi cells. In addition, PRGO (400 nm), RGO (400 nm), and RGO (2 µm) inhibited hTCEpi cell migration and significantly increased αSMA mRNA expression. Further study in vivo is required to determine if RGO nanomaterials delay corneal epithelial healing and induce scar formation.


Subject(s)
Graphite , Nanostructures , Animals , Humans , Rabbits , Graphite/toxicity , Cornea , Wound Healing
9.
Vet Ophthalmol ; 26 Suppl 1: 16-30, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36786010

ABSTRACT

Dry eye disease is a complex ophthalmic disorder that consists of two main subtypes, aqueous deficient dry eye (ADDE) and evaporative dry eye disease (EDED). Due to the complex underlying physiology, human dry eye disease can be difficult to model in laboratory animal species. Thus, the identification and characterization of a spontaneous large animal model of dry eye disease is desirable. Dogs have been described as an ideal spontaneous model of ADDE due to the similar pathophysiology between dogs and humans. Recently, EDED and meibomian gland dysfunction (MGD) have been increasingly recognized and reported in dogs. These reports on EDED and MGD in dogs have identified similarities in pathophysiology, clinical presentations, and diagnostic parameters to humans with the comparable disorders. Additionally, the tests that are used to diagnose EDED and MGD in humans are more easily applicable to dogs than to laboratory species due to the comparable globe sizes between dogs and humans. The reported response of dogs to EDED and MGD therapies are similar to humans, suggesting that they would be a valuable preclinical model for the development of additional therapeutics. Further research and clinical awareness of EDED and MGD in dogs would increase their ability to be utilized as a preclinical model, improving the positive predictive value of therapeutics for EDED and MGD in both humans and dogs.


Subject(s)
Dog Diseases , Dry Eye Syndromes , Meibomian Gland Dysfunction , Humans , Dogs , Animals , Meibomian Gland Dysfunction/veterinary , Meibomian Glands , Tears , Dry Eye Syndromes/diagnosis , Dry Eye Syndromes/veterinary , Dog Diseases/diagnosis
10.
Vet Ophthalmol ; 26 Suppl 1: 125-133, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36478371

ABSTRACT

OBJECTIVES: This study aimed to define the antimicrobial peptide (AMP) expression pattern of the equine ocular surface and amniotic membrane using a targeted qPCR approach and 3'Tag-sequencing. It will serve as a reference for future studies of ocular surface innate immunity and amniotic membrane therapies. PROCEDURES: A targeted qPCR approach was used to investigate the presence of orthologs for three of the most highly expressed beta-defensins (DEFB1, DEFB4B, and DEFB103A) of the human ocular surface and amniotic membrane in equine corneal epithelium, conjunctiva, and amniotic membrane. 3'Tag-sequencing was performed on RNA from one sample of corneal epithelium, conjunctiva, and amniotic membrane to further characterize their AMP expression. RESULTS: Equine corneal epithelium, conjunctiva, and amniotic membrane expressed DEFB1, DEFB4B, and DEFB103A. DEFB103A was expressed at the highest amounts in corneal epithelium, while DEFB4B was most highly expressed in conjunctiva and amniotic membrane. 3'Tag-sequencing from all three tissues confirmed these findings and identified expression of five additional beta-defensins, 11 alpha-defensins and two cathelicidins, with the alpha-defensins showing higher normalized read counts than the beta-defensins. CONCLUSIONS: This study identified AMP expression in the equine cornea and conjunctiva, suggesting that they play a key role in the protection of the equine eye, similar to the human ocular surface. We also determined that equine amniotic membrane expresses a substantial number of AMPs suggesting it could potentiate an antimicrobial effect as a corneal graft material. Future studies will focus on defining the antimicrobial activity of these AMPs and determining their role in microbial keratitis.


Subject(s)
Anti-Infective Agents , alpha-Defensins , beta-Defensins , Humans , Animals , Horses , beta-Defensins/genetics , beta-Defensins/metabolism , alpha-Defensins/metabolism , Amnion/metabolism , Cornea/metabolism , Conjunctiva/metabolism
11.
Vet Ophthalmol ; 26 Suppl 1: 5-15, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36575128

ABSTRACT

Dry eye disease (DED) is a complex multifactorial condition caused by loss of ocular surface homeostasis from quantitative and/or qualitative tear film deficiency. Schirmer tear test (STT) is often the only diagnostic test used to assess for DED in veterinary practice. STT is invaluable in the diagnosis and monitoring of quantitative tear film deficiency (i.e., keratoconjunctivitis sicca); however, it is not sufficient to optimize therapy and fully recognize other contributing factors for the disturbance in ocular surface homeostasis. The present work reviews diagnostic tests for assessing aqueous tear production in veterinary medicine, as well as the quality of tears, corneal epithelial barrier integrity, and the lacrimal functional unit.


Subject(s)
Dry Eye Syndromes , Keratoconjunctivitis Sicca , Dogs , Animals , Dry Eye Syndromes/diagnosis , Dry Eye Syndromes/veterinary , Keratoconjunctivitis Sicca/diagnosis , Keratoconjunctivitis Sicca/veterinary , Cornea , Tears , Diagnostic Tests, Routine
12.
Front Vet Sci ; 10: 1293199, 2023.
Article in English | MEDLINE | ID: mdl-38162475

ABSTRACT

Introduction: Equine recurrent uveitis (ERU), an immune mediated disease characterized by repeated episodes of intra-ocular inflammation, affects 25% of horses in the USA and is the most common cause of glaucoma, cataracts, and blindness. Mesenchymal stromal cells (MSCs) have immunomodulatory properties, which are upregulated by preconditioning with toll-like receptor agonists. The objective was to evaluate safety and migration of TLR-3 agonist polyinosinic, polycytidylic acid (pIC)-activated MSCs injected subconjunctivally in healthy horses prior to clinical application in horses with ERU. We hypothesized that activated allogeneic MSCs injected subconjunctivally would not induce ocular or systemic inflammation and would remain in the conjunctiva for >14 days. Methods: Bulbar subconjunctiva of two horses was injected with 10 × 106 pIC-activated (10 µg/mL, 2 h) GFP-labeled MSCs from one donor three times at two-week intervals. Vehicle (saline) control was injected in the contralateral conjunctiva. Horses received physical and ophthalmic exams [slit lamp biomicroscopy, rebound tonometry, fundic examination, and semiquantitative preclinical ocular toxicology scoring (SPOTS)] every 1-3 days. Systemic inflammation was assessed via CBC, fibrinogen, and serum amyloid A (SAA). Horses were euthanized 14 days following final injection. Full necropsy and histopathology were performed to examine ocular tissues and 36 systemic organs for MSC presence via IVIS Spectrum. Anti-GFP immunohistochemistry was performed on ocular tissues. Results: No change in physical examinations was noted. Bloodwork revealed fibrinogen 100-300 mg/dL (ref 100-400) and SAA 0-25 µg/mL (ref 0-20). Ocular effects of the subjconjucntival injection were similar between MSC and control eyes on SPOTS grading system, with conjunctival hypermia, chemosis and ocular discharge noted bilaterally, which improved without intervention within 14 days. All other ocular parameters were unaffected throughout the study. Necropsy and histopathology revealed no evidence of systemic inflammation. Ocular histopathology was similar between MSC and control eyes. Fluorescent imaging analysis did not locate MSCs. Immunohistochemistry did not identify intact MSCs in the conjunctiva, but GFP-labeled cellular components were present in conjunctival phagocytic cells. Discussion: Allogeneic pIC-activated conjunctival MSC injections were well tolerated. GFP-labeled tracking identified MSC components phagocytosed by immune cells subconjunctivally. This preliminary safety and tracking information is critical towards advancing immune conditioned cellular therapies to clinical trials in horses.

13.
Sci Rep ; 12(1): 18980, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36348026

ABSTRACT

Acute primary angle closure glaucoma is a potentially blinding ophthalmic emergency requiring prompt treatment to lower the elevated intraocular pressure in humans and dogs. The PACG in most of canine breeds is epidemiologically similar to humans with older and female patients overrepresented with the condition. The American Cocker Spaniel (ACS) is among the most common breeds observed with PACG development in dogs. This study initially sought to identify genetic risk factors to explain the high prevalence of PACG in ACSs by using a case-control breed-matched genome-wide association study. However, the GWAS failed to identify candidate loci associated with PACG in this breed. This study then assessed intrinsic ocular morphologic traits that may relate to PACG susceptibility in this breed. Normal ACSs without glaucoma have a crowded anterior ocular segment and narrow iridocorneal angle and ciliary cleft, which is consistent with anatomical risk factors identified in humans. The ACSs showed unique features consisting of posterior bowing of iris and longer iridolenticular contact, which mirrors reverse pupillary block and pigment dispersion syndrome in humans. The ACS could hold potential to serve as an animal model of naturally occurring PACG in humans.


Subject(s)
Glaucoma, Angle-Closure , Glaucoma, Open-Angle , Dogs , Humans , Animals , Female , Glaucoma, Angle-Closure/genetics , Glaucoma, Angle-Closure/veterinary , Glaucoma, Angle-Closure/complications , Genome-Wide Association Study , Plant Breeding , Iris , Glaucoma, Open-Angle/complications , Acute Disease , Intraocular Pressure
14.
Biomolecules ; 12(10)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36291655

ABSTRACT

Corneal opacification due to fibrosis is a leading cause of blindness worldwide. Fibrosis occurs from many causes including trauma, photorefractive surgery, microbial keratitis (infection of the cornea), and chemical burns, yet there is a paucity of therapeutics to prevent or treat corneal fibrosis. This study aimed to determine if andrographolide, a labdane diterpenoid found in Andrographis paniculate, has anti-fibrotic properties. Furthermore, we evaluated if andrographolide could prevent the differentiation of fibroblasts to myofibroblasts in vitro, given that the transforming growth factor beta-1(TGF-ß1) stimulated persistence of myofibroblasts in the cornea is a primary component of fibrosis. We demonstrated that andrographolide inhibited the upregulation of alpha smooth muscle actin (αSMA) mRNA and protein in rabbit corneal fibroblasts (RCFs), thus, demonstrating a reduction in the transdifferentiation of myofibroblasts. Immunofluorescent staining of TGF-ß1-stimulated RCFs confirmed a dose-dependent decrease in αSMA expression when treated with andrographolide. Additionally, andrographolide was well tolerated in vivo and had no impact on corneal epithelialization in a rat debridement model. These data support future studies investigating the use of andrographolide as an anti-fibrotic in corneal wound healing.


Subject(s)
Diterpenes , Transforming Growth Factor beta1 , Rabbits , Rats , Animals , Transforming Growth Factor beta1/metabolism , Myofibroblasts/metabolism , Actins/metabolism , Cells, Cultured , Fibroblasts/metabolism , Diterpenes/pharmacology , Cornea/metabolism , Fibrosis , RNA, Messenger/genetics
15.
Transl Vis Sci Technol ; 11(9): 23, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36156731

ABSTRACT

Purpose: To define the normal range of central corneal thickness (CCT) and corneal endothelial cell density (ECD) in rhesus macaques (Macaca mulatta) and the effects of age, body weight, sex, and intraocular pressure (IOP) on these parameters. Methods: Ophthalmic examinations were performed on 144 rhesus macaques without anterior segment pathology. The CCT was measured via ultrasound pachymetry (USP) and specular microscopy, and the ECD was semiautomatically and manually counted using specular microscopy. Rebound tonometry was used to measure IOP. Linear regression and mixed-effects linear regression models were used to evaluate the effects of age, body weight, sex, and IOP on CCT and ECD. Results: We included 98 females and 46 males with an age range of 0.2 to 29.4 years. The mean CCT by USP and specular microscopy were 483 ± 39 and 463 ± 33 µm, respectively, and were statistically different (P < 0.001). The ECDs were 2717 ± 423 and 2747 ± 438 cells/mm2 by semiautomated and manual analysis, respectively. Corneal endothelial degeneration was identified in one aged rhesus macaque. Conclusions: The mean USP and specular microscopy CCT values differed significantly, whereas the semiautomatic and manual ECD did not. The CCT was associated with the IOP and sex, whereas the ECD was associated with body weight and age (P < 0.05). As in humans, corneal disease in rhesus macaques is uncommon. Translational Relevance: Establishing reference values is fundamental to use rhesus macaques as a model for corneal disease or to identify toxicity in studies of ocular drugs or devices.


Subject(s)
Cornea , Corneal Dystrophies, Hereditary , Adolescent , Adult , Aged , Animals , Body Weight , Child , Child, Preschool , Cornea/anatomy & histology , Cornea/pathology , Corneal Dystrophies, Hereditary/pathology , Endothelial Cells , Female , Humans , Infant , Macaca mulatta , Male , Reproducibility of Results , Young Adult
16.
Transl Vis Sci Technol ; 11(9): 2, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36048012

ABSTRACT

Purpose: The purpose of this study was to evaluate the tolerability and efficacy of topical rho-kinase inhibitor ripasudil in the treatment of primary corneal endothelial degeneration (PCED) in dogs. Methods: Twenty-one eyes of 12 client-owned, PCED-affected dogs received topical ripasudil 4 times daily. Ophthalmic examination, ultrasonic pachymetry (USP), Fourier-domain optical coherence tomography (FD-OCT), and in vivo confocal microscopy were performed at baseline and 1, 3, 6, and 12 months. Effects of treatment on corneal thickness, corneal edema extent, and endothelial cell density (ECD) were evaluated by repeated-measures ANOVA or Friedman test. Individual eyes were classified as improved, progressed, or stable at 12 months using clinical response criteria. Kaplan-Meier curves and log-rank test were used to compare ripasudil-treated eyes to age-, breed/size-, and disease stage-matched historical controls. Results: During treatment, 12 dogs developed conjunctival hyperemia, 4 demonstrated reticular bullous epithelial edema, and 2 developed corneal stromal hemorrhage. No adverse event necessitated permanent cessation of ripasudil. Central corneal thickness measured by USP significantly progressed from baseline to 12 months. Corneal thickness by FD-OCT, ECD, and edema extent did not differ over time. Considered individually, 5 eyes improved, 8 remained stable, and 8 progressed. The log-rank test found less edema progression in ripasudil-treated eyes compared to historical controls. Conclusions: Ripasudil was well-tolerated in PCED-affected dogs. Response to therapy varied; 62% of eyes showed improved or stable disease whereas 38% progressed. Ripasudil-treated eyes progressed more slowly than historical controls. Translational Relevance: Topical ripasudil offered a therapeutic benefit in a subset of patients using a canine model of endothelial degeneration, which may guide future trials in humans.


Subject(s)
Corneal Dystrophies, Hereditary , Corneal Edema , Animals , Dogs , Humans , Isoquinolines/pharmacology , Isoquinolines/therapeutic use , Sulfonamides/therapeutic use
17.
Dis Model Mech ; 15(7)2022 07 01.
Article in English | MEDLINE | ID: mdl-35758026

ABSTRACT

Retinitis pigmentosa (RP), a retinal degenerative disease, is the leading cause of heritable blindness. Previously, we described that Arap1-/- mice develop a similar pattern of photoreceptor degeneration. Arap1 is an Arf-directed GTPase-activating protein shown to modulate actin cytoskeletal dynamics. Curiously, Arap1 expression was detected in Müller glia and retinal pigment epithelium (RPE), but not the photoreceptors themselves. In this study, we generated conditional knockout mice for Müller glia/RPE, Müller glia and RPE via targeting Rlbp1, Glast and Vmd2 promoters, respectively, to drive Cre recombinase expression to knock out Arap1. Vmd2-Cre Arap1tm1c/tm1c and Rlbp1-Cre Arap1tm1c/tm1c mice, but not Glast-Cre Arap1tm1c/tm1c mice, recapitulated the phenotype originally observed in germline Arap1-/- mice. Mass spectrometry analysis of human ARAP1 co-immunoprecipitation identified candidate binding partners of ARAP1, revealing potential interactants involved in phagocytosis, cytoskeletal composition, intracellular trafficking and endocytosis. Quantification of outer segment phagocytosis in vivo demonstrated a clear phagocytic defect in Arap1-/- mice compared to Arap1+/+ controls. We conclude that Arap1 expression in RPE is necessary for photoreceptor survival due to its indispensable function in RPE phagocytosis. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Retinal Degeneration , Retinitis Pigmentosa , Adaptor Proteins, Signal Transducing , Animals , Carrier Proteins/metabolism , GTPase-Activating Proteins/metabolism , Humans , Mice , Mice, Knockout , Phagocytosis , Retina/metabolism , Retinal Degeneration/metabolism , Retinal Pigment Epithelium/metabolism , Retinitis Pigmentosa/metabolism
18.
Front Microbiol ; 13: 857735, 2022.
Article in English | MEDLINE | ID: mdl-35722307

ABSTRACT

Microbial keratitis is a common cause of ocular pain and visual impairment worldwide. The ocular surface has a relatively paucicellular microbial community, mostly found in the conjunctiva, while the cornea would be considered relatively sterile. However, in patients with microbial keratitis, the cornea can be infected with multiple pathogens including Staphylococcus aureus, Pseudomonas aeruginosa, and Fusarium sp. Treatment with topical antimicrobials serves as the standard of care for microbial keratitis, however, due to high rates of pathogen resistance to current antimicrobial medications, alternative therapeutic strategies must be developed. Multiple studies have characterized the expression and activity of antimicrobial peptides (AMPs), endogenous peptides with key antimicrobial and wound healing properties, on the ocular surface. Recent studies and clinical trials provide promise for the use of AMPs as therapeutic agents. This article reviews the repertoire of AMPs expressed at the ocular surface, how expression of these AMPs can be modulated, and the potential for harnessing the AMPs as potential therapeutics for patients with microbial keratitis.

19.
Pharmaceutics ; 14(5)2022 May 03.
Article in English | MEDLINE | ID: mdl-35631569

ABSTRACT

The ocular surface, comprised of the transparent cornea, conjunctiva, and protective tear film, forms a protective barrier defending deeper structures of the eye from particulate matter and mechanical trauma. This barrier is routinely exposed to a multitude of naturally occurring and engineered nanomaterials (ENM). Metallic ENMs are particularly ubiquitous in commercial products with a high risk of ocular exposure, such as cosmetics and sunscreens. Additionally, there are several therapeutic uses for metallic ENMs owing to their attractive magnetic, antimicrobial, and functionalization properties. The increasing commercial and therapeutic applications of metallic ENMs come with a high risk of ocular exposure with poorly understood consequences to the health of the eye. While the toxicity of metallic ENMs exposure has been rigorously studied in other tissues and organs, further studies are necessary to understand the potential for adverse effects and inform product usage for individuals whose ocular health may be compromised by injury, disease, or surgical intervention. This review provides an update of current literature on the ocular toxicity of metallic ENMs in vitro and in vivo, as well as the risks and benefits of therapeutic applications of metallic ENMs in ophthalmology.

20.
BMC Vet Res ; 18(1): 117, 2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35346188

ABSTRACT

BACKGROUND: Imaging features obtained with Fourier-domain optical coherence tomography (FD-OCT) and in vivo confocal microscopy (IVCM) for corneal stromal disorders have been sparsely reported in dogs. This case report is a compilation of imaging features for three cases of different stromal disorders of the canine cornea which have not yet been reported elsewhere. CASE PRESENTATION: Lipid deposition in case 1 appeared as needle-shaped hyperreflective lines along the collagen lamellae, which correlated histologically with lipid clefts. In case 2, glycosaminoglycan accumulation by mucopolysaccharidosis type 1 caused diffuse stromal hyperreflectivity and depletion of keratocytes on IVCM and was associated with secondary corneal degeneration presumed to be calcium deposition. In case 3, posterior corneal stromal opacities in the absence of ocular inflammation were identified. Hyperreflective particles were scattered in the middle and posterior corneal stroma on FD-OCT. With IVCM, hyperreflective deposits were identified within keratocytes and the number of enlarged keratocytes containing hyperreflective deposits increased towards the posterior stroma. The bilateral, non-inflammatory nature and unique appearance with IVCM is most consistent with a posterior stromal dystrophy reminiscent of pre-Descemet corneal dystrophy described in humans. CONCLUSIONS: In vivo multimodal corneal imaging facilitated instantaneous microstructural analysis and may be valuable in the differential diagnosis of corneal stromal disorders in veterinary clinical practice. The non-specific nature of imaging findings occurs in some conditions such as mucopolysaccharidosis, thus in vivo corneal imaging should be complemented with other gold standard methods of definitive diagnosis.


Subject(s)
Corneal Dystrophies, Hereditary , Dog Diseases , Animals , Cornea/diagnostic imaging , Cornea/pathology , Corneal Dystrophies, Hereditary/diagnostic imaging , Corneal Dystrophies, Hereditary/veterinary , Corneal Stroma/diagnostic imaging , Corneal Stroma/pathology , Dog Diseases/diagnostic imaging , Dog Diseases/pathology , Dogs , Microscopy, Confocal/methods , Microscopy, Confocal/veterinary , Tomography, Optical Coherence/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...