Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Psychiatry ; 13: 1054224, 2022.
Article in English | MEDLINE | ID: mdl-36756635

ABSTRACT

Emotion induction in psychological and neuroscientific research has been mostly done by presenting participants with picture or film material. However, it is debatable whether this passive approach to emotion induction results in an affective state comparable to real-life emotions, and if the neural correlates of emotion processing are ecologically valid. To investigate the appropriateness of pictures for the induction of emotions, we presented 56 participants in a within-subjects design with naturalistic disgusting and neutral stimuli as well as with pictures of said stimulus material while recording continuous EEG data. We calculated asymmetry indices (AIs) for alpha power as an index of emotion processing and emotion regulation at the F3/4, F5/6, F7/8, and O1/2 electrode pairs. Participants reported higher disgust ratings for disgusting naturalistic compared to disgusting pictorial stimuli. Investigating changes in the EEG signal in participants with a pronounced disgust response (n = 38), we found smaller AIs for naturalistic stimuli compared to pictures. Moreover, in this disgusted sub-sample, there were smaller AIs in response to naturalistic disgusting stimuli compared to pictorial disgusting and neutral stimuli at the O1/2 electrode pair indicating stronger activation of the right relative to the left hemisphere by naturalistic stimuli. As the right hemisphere has been shown to display dominance in processing negative and withdrawal-associated emotions, this might indicate that naturalistic stimuli are more appropriate for the induction of emotions than picture stimuli. To improve the validity of results from emotion induction, future research should incorporate stimulus material that is as naturalistic as possible.

2.
Oncotarget ; 7(46): 74807-74819, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27579538

ABSTRACT

Increased mRNA translation drives carcinogenesis and is an attractive target for the development of new anti-cancer drugs. In this work, we investigated effects of phenethylisothiocyanate (PEITC), a phytochemical with chemopreventive and anti-cancer activity, on mRNA translation. PEITC rapidly inhibited global mRNA translation in human breast cancer-derived MCF7 cells and mouse embryonic fibroblasts (MEFs). In addition to the known inhibitory effects of PEITC on mTORC1 activity, we demonstrate that PEITC increased eIF2α phosphorylation. PEITC also increased formation of stress granules which are typically associated with eIF2α phosphorylation and accumulation of translationally stalled mRNAs. Analysis of genetically modified MEFs demonstrated that optimal inhibition of global mRNA translation by PEITC was dependent on eIF2α phosphorylation, but not mTORC1 inhibition. We extended this study into primary leukemic B cells derived from patients with chronic lymphocytic leukaemia (CLL). CLL cells were stimulated in vitro with anti-IgM to mimic binding of antigen, a major driver of this leukemia. In CLL cells, PEITC increased eIF2α phosphorylation, inhibited anti-IgM-induced mTORC1 activation and decreased both basal and anti-IgM-induced global mRNA translation. PEITC also inhibited transcription and translation of MYC mRNA and accumulation of the MYC oncoprotein, in anti-IgM-stimulated cells. Moreover, treatment of CLL cells with PEITC and the BTK kinase inhibitor ibrutinib decreased anti-IgM-induced translation and induced cell death to a greater extent than either agent alone. Therefore, PEITC can inhibit both global and mRNA specific translation (including MYC) via effects on multiple regulatory pathways. Inhibition of mRNA translation may contribute to the chemopreventive and anti-cancer effects of PEITC.


Subject(s)
Eukaryotic Initiation Factor-2/metabolism , Isothiocyanates/pharmacology , Leukemia/genetics , Leukemia/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Protein Biosynthesis/drug effects , Antibodies, Anti-Idiotypic/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Gene Expression Regulation, Leukemic/drug effects , Genes, myc , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , MCF-7 Cells , Phosphorylation/drug effects , RNA, Messenger/genetics , Receptors, Antigen, B-Cell/metabolism , Stress, Physiological , Transcription, Genetic/drug effects
3.
Blood ; 127(4): 449-57, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26491071

ABSTRACT

Antigenic stimulation via the B-cell receptor (BCR) is a major driver of the proliferation and survival of chronic lymphocytic leukemia (CLL) cells. However, the precise mechanisms by which BCR stimulation leads to accumulation of malignant cells remain incompletely understood. Here, we investigated the ability of BCR stimulation to increase messenger RNA (mRNA) translation, which can promote carcinogenesis by effects on both global mRNA translation and upregulated expression of specific oncoproteins. Re-analysis of gene expression profiles revealed striking upregulation of pathways linked to mRNA translation both in CLL cells derived from lymph nodes, the major site of antigen stimulation in vivo, and after BCR stimulation in vitro. Anti-IgM significantly increased mRNA translation in primary CLL cells, measured using bulk metabolic labeling and a novel flow cytometry assay to quantify responses at a single-cell level. These translational responses were suppressed by inhibitors of BTK (ibrutinib) and SYK (tamatinib). Anti-IgM-induced mRNA translation was associated with increased expression of translation initiation factors eIF4A and eIF4GI, and reduced expression of the eIF4A inhibitor, PDCD4. Anti-IgM also increased mRNA translation in normal blood B cells, but without clear modulatory effects on these factors. In addition, anti-IgM increased translation of mRNA-encoding MYC, a major driver of disease progression. mRNA translation is likely to be an important mediator of the growth-promoting effects of antigen stimulation acting, at least in part, via translational induction of MYC. Differences in mechanisms of translational regulation in CLL and normal B cells may provide opportunities for selective therapeutic attack.


Subject(s)
Gene Expression Regulation, Leukemic , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Proto-Oncogene Proteins c-myc/genetics , RNA, Messenger/genetics , Receptors, Antigen, B-Cell/immunology , Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase , Antibodies, Anti-Idiotypic/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Cell Line, Tumor , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Piperidines , Protein Biosynthesis/drug effects , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Receptors, Antigen, B-Cell/genetics , Syk Kinase , Tumor Cells, Cultured
4.
Mol Cancer ; 14: 79, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25889892

ABSTRACT

BACKGROUND: Tumor hypoxia is one of the features of tumor microenvironment that contributes to chemoresistance. miRNAs have recently been shown to play important roles in tumorigenesis and drug resistance. Moreover, hypoxia also regulates the expression of a series of miRNAs. However, the interaction between chemoresistance, hypoxia and miRNAs has not been explored yet. The aim of this study is to understand the mechanisms activated/inhibited by miRNAs under hypoxia that induce resistance to chemotherapy-induced apoptosis. METHODS: TaqMan low-density array was used to identify changes in miRNA expression when cells were exposed to etoposide under hypoxia or normoxia. The effects of miR-196b overexpression on apoptosis and cell proliferation were studied in HepG2 cells. miR-196b target mRNAs were identified by proteomic analysis, luciferase activity assay, RT-qPCR and western blot analysis. RESULTS: Results showed that hypoxia down-regulated miR-196b expression that was induced by etoposide. miR-196b overexpression increased the etoposide-induced apoptosis and reversed the protection of cell death observed under hypoxia. By a proteomic approach combined with bioinformatics analyses, we identified IGF2BP1 as a potential target of miR-196b. Indeed, miR-196b overexpression decreased IGF2BP1 RNA expression and protein level. The IGF2BP1 down-regulation by either miR-196b or IGF2BP1 siRNA led to an increase in apoptosis and a decrease in cell viability and proliferation in normal culture conditions. However, IGF2BP1 silencing did not modify the chemoresistance induced by hypoxia, probably because it is not the only target of miR-196b involved in the regulation of apoptosis. CONCLUSIONS: In conclusion, for the first time, we identified IGF2BP1 as a direct and functional target of miR-196b and showed that miR-196b overexpression reverses the chemoresistance induced by hypoxia. These results emphasize that the chemoresistance induced by hypoxia is a complex mechanism.


Subject(s)
Apoptosis/genetics , Cell Proliferation/genetics , MicroRNAs/genetics , RNA-Binding Proteins/genetics , Apoptosis/drug effects , Cell Hypoxia/drug effects , Cell Hypoxia/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell Survival/genetics , Down-Regulation/drug effects , Down-Regulation/genetics , Drug Resistance, Neoplasm/genetics , Etoposide/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Hep G2 Cells , Humans , Proteomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...