Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 284(18): 11892-9, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19251696

ABSTRACT

We have investigated the possible biochemical basis for enhancements in NO production in endothelial cells that have been correlated with agonist- or shear stress-evoked phosphorylation at Ser-1179. We have found that a phosphomimetic substitution at Ser-1179 doubles maximal synthase activity, partially disinhibits cytochrome c reductase activity, and lowers the EC(50)(Ca(2+)) values for calmodulin binding and enzyme activation from the control values of 182 +/- 2 and 422 +/- 22 nm to 116 +/- 2 and 300 +/- 10 nm. These are similar to the effects of a phosphomimetic substitution at Ser-617 (Tran, Q. K., Leonard, J., Black, D. J., and Persechini, A. (2008) Biochemistry 47, 7557-7566). Although combining substitutions at Ser-617 and Ser-1179 has no additional effect on maximal synthase activity, cooperativity between the two substitutions completely disinhibits reductase activity and further reduces the EC(50)(Ca(2+)) values for calmodulin binding and enzyme activation to 77 +/- 2 and 130 +/- 5 nm. We have confirmed that specific Akt-catalyzed phosphorylation of Ser-617 and Ser-1179 and phosphomimetic substitutions at these positions have similar functional effects. Changes in the biochemical properties of eNOS produced by combined phosphorylation at Ser-617 and Ser-1179 are predicted to substantially increase synthase activity in cells at a typical basal free Ca(2+) concentration of 50-100 nm.


Subject(s)
Calcium/chemistry , Calmodulin/chemistry , Nitric Oxide Synthase Type III/chemistry , Proto-Oncogene Proteins c-akt/chemistry , Amino Acid Substitution , Animals , Calcium/metabolism , Calmodulin/genetics , Calmodulin/metabolism , Cattle , Cytochrome Reductases/chemistry , Cytochrome Reductases/genetics , Cytochrome Reductases/metabolism , Humans , Mutation, Missense , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Phosphorylation/physiology , Protein Binding/physiology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Stress, Physiological/physiology
2.
Biochemistry ; 47(28): 7557-66, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18558722

ABSTRACT

We have investigated the effects of phosphorylation at Ser-617 and Ser-635 within an autoinhibitory domain (residues 595-639) in bovine endothelial nitric oxide synthase on enzyme activity and the Ca (2+) dependencies for calmodulin binding and enzyme activation. A phosphomimetic S617D substitution doubles the maximum calmodulin-dependent enzyme activity and decreases the EC 50(Ca (2+)) values for calmodulin binding and enzyme activation from the wild-type values of 180 +/- 2 and 397 +/- 23 nM to values of 109 +/- 2 and 258 +/- 11 nM, respectively. Deletion of the autoinhibitory domain also doubles the maximum calmodulin-dependent enzyme activity and decreases the EC 50(Ca (2+)) values for calmodulin binding and calmodulin-dependent enzyme activation to 65 +/- 4 and 118 +/- 4 nM, respectively. An S635D substitution has little or no effect on enzyme activity or EC 50(Ca (2+)) values, either alone or when combined with the S617D substitution. These results suggest that phosphorylation at Ser-617 partially reverses suppression by the autoinhibitory domain. Associated effects on the EC 50(Ca (2+)) values and maximum calmodulin-dependent enzyme activity are predicted to contribute equally to phosphorylation-dependent enhancement of NO production during a typical agonist-evoked Ca (2+) transient, while the reduction in EC 50(Ca (2+)) values is predicted to be the major contributor to enhancement at resting free Ca (2+) concentrations.


Subject(s)
Calcium/metabolism , Calmodulin/metabolism , Nitric Oxide Synthase Type III/antagonists & inhibitors , Nitric Oxide Synthase Type III/metabolism , Animals , Binding Sites , Cattle , Cloning, Molecular , DNA Primers , Kinetics , Mutagenesis , Nitric Oxide Synthase Type III/genetics , Phosphoproteins/metabolism , Phosphorylation , Protein Binding , Recombinant Proteins/metabolism
3.
Biochemistry ; 45(22): 6987-95, 2006 Jun 06.
Article in English | MEDLINE | ID: mdl-16734434

ABSTRACT

The relationship between the free Ca2+ concentration and the apparent dissociation constant for the complex between calmodulin (CaM) and the neuromodulin IQ domain consists of two phases. In the first phase, Ca2+ bound to the C-ter EF hand pair in CaM increases the Kd for the complex from the Ca2+-free value of 2.3 +/- 0.1 microM to a value of 14.4 +/- 1.3 microM. In the second phase, Ca2+ bound to the N-ter EF hand pair reduces the Kd for the complex to a value of 2.5 +/- 0.1 microM, reversing the effect of the first phase. Due to energy coupling effects associated with these phases, the mean dissociation constant for binding of Ca2+ to the C-ter EF hand pair is increased approximately 3-fold, from 1.8 +/- 0.1 to 5.1 +/- 0.7 microM, and the mean dissociation constant for binding of Ca2+ to the N-ter EF hand pair is decreased by the same factor, from 11.2 +/- 1.0 to 3.5 +/- 0.6 microM. These characteristics produce a bell-shaped relationship between the apparent dissociation constant for the complex and the free Ca2+ concentration, with a distance of 5-6 microM between the midpoints of the rising and falling phases. Release of CaM from the neuromodulin IQ domain therefore appears to be promoted over a relatively narrow range of free Ca2+ concentrations. Our results demonstrate that CaM-IQ domain complexes can function as biphasic Ca2+ switches through opposing effects of Ca2+ bound sequentially to the two EF hand pairs in CaM.


Subject(s)
Calcium/chemistry , Calmodulin-Binding Proteins/chemistry , Calmodulin/chemistry , GAP-43 Protein/chemistry , Calmodulin/genetics , Mutation , Protein Conformation , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...