Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 12(5): 782-790, 2021 May 13.
Article in English | MEDLINE | ID: mdl-34055226

ABSTRACT

Bruton's tyrosine kinase (BTK) is a cytoplasmic tyrosine kinase that plays a critical role in the activation of B cells, macrophages, and osteoclasts. Given the key role of these cell types in the pathology of autoimmune disorders, BTK inhibitors have the potential to improve treatment outcomes in multiple diseases. Herein, we report the discovery and characterization of a novel potent and selective covalent 4-oxo-4,5-dihydro-3H-1-thia-3,5,8-triazaacenaphthylene-2-carboxamide BTK inhibitor chemotype. Compound 27 irreversibly inhibits BTK by targeting a noncatalytic cysteine residue (Cys481) for covalent bond formation. Compound 27 is characterized by selectivity for BTK, potent in vivo BTK occupancy that is sustained after it is cleared from systemic circulation, and dose-dependent efficacy at reducing joint inflammation in a rat collagen-induced arthritis model.

2.
Bioorg Med Chem Lett ; 30(12): 127174, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32334912

ABSTRACT

Starting from previously identified thiazole-2-carboxamides exemplified by compound 1/6, two new series of RORγt inverse agonists with significantly improved aqueous solubility, ADME parameters and oral PK properties were discovered. These scaffolds were identified from a bioisosteric amide replacement approach. Amongst the variety of heterocycles explored, a 1,3,4-oxadiazole led to compounds with the best overall profile for SAR development and in vivo exploration. In an ex vivo mouse PD model, concentration dependent efficacy was demonstrated and compounds 3/5 and 6/3 were profiled in a 5-day rat tolerability study.


Subject(s)
Amides/pharmacology , Drug Discovery , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Oxadiazoles/pharmacology , Thiazoles/pharmacology , Administration, Oral , Amides/administration & dosage , Amides/chemistry , Animals , Dose-Response Relationship, Drug , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Oxadiazoles/administration & dosage , Oxadiazoles/chemistry , Rats , Structure-Activity Relationship , Thiazoles/administration & dosage , Thiazoles/chemistry
3.
J Med Chem ; 63(6): 2915-2929, 2020 03 26.
Article in English | MEDLINE | ID: mdl-32134643

ABSTRACT

To identify Janus kinase (JAK) inhibitors that selectively target gastrointestinal tissues with limited systemic exposures, a class of imidazopyrrolopyridines with a range of physical properties was prepared and evaluated. We identified compounds with low intrinsic permeability and determined a correlation between permeability and physicochemical properties, clogP and tPSA, for a subset of compounds. This low intrinsic permeability translated into compounds displaying high colonic exposure and low systemic exposure after oral dosing at 25 mg/kg in mouse. In a mouse PK/PD model, oral dosing of lead compound 2 demonstrated dose-dependent inhibition of pSTAT phosphorylation in colonic explants post-oral dose but low systemic exposure and no measurable systemic pharmacodynamic activity. We thus demonstrate the utility of JAK inhibitors with low intrinsic permeability as a feasible approach to develop gut-restricted, pharmacologically active molecules with a potential advantage over systemically available compounds that are limited by systemic on-target adverse events.


Subject(s)
Inflammatory Bowel Diseases/drug therapy , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/pharmacokinetics , Pyridines/pharmacology , Pyridines/pharmacokinetics , Administration, Oral , Animals , Dogs , Drug Discovery , Female , Humans , Inflammatory Bowel Diseases/metabolism , Janus Kinase Inhibitors/administration & dosage , Janus Kinase Inhibitors/chemistry , Janus Kinases/antagonists & inhibitors , Janus Kinases/metabolism , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred C57BL , Permeability , Phosphorylation/drug effects , Pyridines/administration & dosage , Pyridines/chemistry
4.
Mol Cancer Ther ; 5(1): 160-9, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16432175

ABSTRACT

The activity and stability of the p53 tumor suppressor are regulated by the human homologue of the mouse double minute 2 (Hdm2) oncoprotein. It has been hypothesized that small molecules disrupting the Hdm2:p53 complex would allow for the activation of p53 and result in growth suppression. We have identified small-molecule inhibitors of the Hdm2:p53 interaction using our proprietary ThermoFluor microcalorimetry technology. Medicinal chemistry and structure-based drug design led to the development of an optimized series of benzodiazepinediones, including TDP521252 and TDP665759. Activities were dependent on the expression of wild-type (wt) p53 and Hdm2 as determined by lack of potency in mutant or null p53-expressing cell lines or cells engineered to no longer express Hdm2 and wt p53. TDP521252 and TDP665759 inhibited the proliferation of wt p53-expressing cell lines with average IC(50)s of 14 and 0.7 micromol/L, respectively. These results correlated with the direct cellular dissociation of Hdm2 from wt p53 observed within 15 minutes in JAR choriocarcinoma cells. Additional activities of these inhibitors in vitro include stabilization of p53 protein levels, up-regulation of p53 target genes in a DNA damage-independent manner, and induction of apoptosis in HepG2 cells. Administration of TDP665759 to mice led to an increase in p21(waf1/cip1) levels in liver samples. Finally, TDP665759 synergizes with doxorubicin both in culture and in an A375 xenograft model to decrease tumor growth. Taken together, these data support the potential utility of small-molecule inhibitors of the Hdm2:p53 interaction for the treatment of wt p53-expressing tumors.


Subject(s)
Benzodiazepinones/pharmacology , Doxorubicin/pharmacology , Proto-Oncogene Proteins c-mdm2/drug effects , Tumor Suppressor Protein p53/drug effects , Animals , Antineoplastic Combined Chemotherapy Protocols , Apoptosis/drug effects , Benzodiazepines/chemistry , Benzodiazepines/pharmacology , Benzodiazepinones/administration & dosage , Cell Line, Tumor , Cell Proliferation/drug effects , Doxorubicin/administration & dosage , Drug Screening Assays, Antitumor , Drug Synergism , Female , Humans , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/metabolism , Mice , Mice, Nude , Multiprotein Complexes , Mutation , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Cells, Cultured , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
5.
J Med Chem ; 48(4): 926-34, 2005 Feb 24.
Article in English | MEDLINE | ID: mdl-15715463

ABSTRACT

A novel series of potent and selective alpha(v)beta(3)/alpha(v)beta(5) dual( )()inhibitors was designed, synthesized, and evaluated against several integrins. These compounds were synthesized through a Mitsunobu reaction between the guanidinium mimetics and the corresponding central templates. Guanidinium mimetics with enhaced rigidity (i.e., (2-pyridylamino)propoxy versus the 2-(6-methylamino-2-pyridyl)ethoxy) led to improved activity toward alpha(v)beta(3). Exemplary oral bioavailability in mice was achieved using the indole central scaffold. Although, oral bioavailability was maintained when the indole molecular core was replace with the bioisosteric benzofuran or benzothiophene ring systems, it was found to not significantly impact the integrin activity or selectivity. However, the indole series displayed the best in vivo pharmacokinetic properties. Thus, the indole series was selected for further structure-activity relationships to obtain more potent alpha(v)beta(3)/alpha(v)beta(5) dual antagonist with improved oral bioavailability.


Subject(s)
Benzoxazoles/chemical synthesis , Indoles/chemical synthesis , Integrin alphaVbeta3/antagonists & inhibitors , Integrins/antagonists & inhibitors , Receptors, Vitronectin/antagonists & inhibitors , Thiophenes/chemical synthesis , Administration, Oral , Animals , Benzoxazoles/chemistry , Benzoxazoles/pharmacology , Biological Availability , Caco-2 Cells , Drug Design , Humans , Indoles/chemistry , Indoles/pharmacology , Mice , Permeability , Structure-Activity Relationship , Thiophenes/chemistry , Thiophenes/pharmacology
6.
Org Lett ; 5(13): 2203-6, 2003 Jun 26.
Article in English | MEDLINE | ID: mdl-12816409

ABSTRACT

A stereocontrolled route to the deschloro cyclopentyl core of the palau'amines and styloguanidines has been developed. This strategy makes use of the intramolecular Pauson-Khand cyclization of an enyne with a "transient N-O tether" to construct a five-membered carbocycle in a diastereoselective fashion. [reaction: see text]

SELECTION OF CITATIONS
SEARCH DETAIL
...