Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Toxicol In Vitro ; 98: 105826, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615723

ABSTRACT

Human induced pluripotent stem cells (iPSC) have the potential to produce desired target cell types in vitro and allow for the high-throughput screening of drugs/chemicals at population level thereby minimising the cost of drug discovery and drug withdrawals after clinical trials. There is a substantial need for the characterisation of the iPSC derived models to better understand and utilise them for toxicological relevant applications. In our study, iPSC (SBAD2 or SBAD3 lines obtained from StemBANCC project) were differentiated towards toxicologically relevant cell types: alveolar macrophages, brain capillary endothelial cells, brain cells, endothelial cells, hepatocytes, lung airway epithelium, monocytes, podocytes and renal proximal tubular cells. A targeted transcriptomic approach was employed to understand the effects of differentiation protocols on these cell types. Pearson correlation and principal component analysis (PCA) separated most of the intended target cell types and undifferentiated iPSC models as distinct groups with a high correlation among replicates from the same model. Based on PCA, the intended target cell types could also be separated into the three germ layer groups (ectoderm, endoderm and mesoderm). Differential expression analysis (DESeq2) presented the upregulated genes in each intended target cell types that allowed the evaluation of the differentiation to certain degree and the selection of key differentiation markers. In conclusion, these data confirm the versatile use of iPSC differentiated cell types as standardizable and relevant model systems for in vitro toxicology.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , Transcriptome , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Cell Differentiation/drug effects , Humans , Transcriptome/drug effects , Cell Line , Endothelial Cells/drug effects , Cells, Cultured
2.
Biomacromolecules ; 24(9): 3985-3995, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37642585

ABSTRACT

Proteins used as building blocks to template nanostructures with manifold morphologies have been widely reported. Understanding their self-assembly and reassembly mechanism is important for designing functional biomaterials. Herein, we show that enzyme-hydrolyzed α-lactalbumin (α-lac) can self-assemble into either nanotubes in the presence of Ca2+ ions or nanospheres in the absence of Ca2+ in solution. Remarkably, such assembled α-lac nanotubes can be elongated by adding preassembled α-lac nanospheres and Ca2+ solution, which suggests that the self-assembled α-lac nanospheres undergo disassembly and reassembly processes into existing nanotube nuclei. By performing atomic force microscopy (AFM), transmission electron microscopy (TEM), and confocal laser scanning microscopy (CLSM), it indicates that there is an equilibrium among nanotubes, nanospheres, hydrolyzed α-lac, and Ca2+ in solution. The structural transition between nanotubes and nanospheres is driven from a less stable structure into a more stable structure determined by the conditions. During the transition from nanospheres into nanotubes, the hydrolyzed α-lac in nanospheres transfers into helical ribbon form at both nanotube extremities. Then helical ribbons close into mature nanotubes, extending the length of the initial nuclei. Besides, by dilution or adding ethylene glycol bis(2-aminoethyl ether) tetraacetic acid (EGTA), the decreased Ca2+ concentration in solution drives the Ca2+ dissociating from nanotubes into solution, leading to the transitions from nanotubes into nanospheres. The reversible transformation between nanotubes and nanospheres is achieved by adjusting the pH value from 7.5 to 5.0 and back to 7.5. This is because the stability of nanotubes decreases from pH 7.5 to 5 but increases from 5 to 7.5. Significantly, this approach can be used for the fabrication of various responsive nanomaterials from the same starting material.


Subject(s)
Nanospheres , Nanostructures , Nanotubes , Ions , Biocompatible Materials
3.
Sci Rep ; 13(1): 9375, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37296179

ABSTRACT

Myeloid cells form an essential component of initial responses to environmental hazards and toxic exposures. The ability to model these responses in vitro is central to efforts tasked with identifying hazardous materials and understanding mechanisms of injury and disease. Induced pluripotent stem cell (iPSC) derived cells have been suggested as alternatives to more established primary cell testing systems for these purposes. iPSC derived macrophage and dendritic like cells were compared to CD34+ haematopoietic stem cell derived populations using transcriptomic analysis. Using single cell sequencing-based characterisation of iPSC derived myeloid cells, we identified transitional, mature and M2 like macrophages as well as dendritic like antigen presenting cells and fibrocytes. Direct transcriptomic comparisons between iPSC and CD34+ cell derived populations revealed higher expression of myeloid differentiation genes such as MNDA, CSF1R and CSF2RB in CD34+ cells, while iPSC populations had higher fibroblastic and proliferative markers. Exposure of differentiated macrophage populations to nanoparticle alone or in combination with dust mite, resulted in differential gene expression on combination only, with responses markedly absent in iPSC compared to CD34+ derived cells. The lack of responsiveness in iPSC derived cells may be attributable to lower levels of dust mite component receptors CD14, TLR4, CLEC7A and CD36. In summary, iPSC derived myeloid cells display typical characteristics of immune cells but may lack a fully mature phenotype to adequately respond to environmental exposures.


Subject(s)
Induced Pluripotent Stem Cells , Antigens, CD34/metabolism , Cell Differentiation/genetics , Hematopoietic Stem Cells/metabolism , Myeloid Cells/metabolism
4.
Ecotoxicol Environ Saf ; 259: 115013, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37182301

ABSTRACT

Renewable alternatives to fossil diesel (FD) including fatty acid methyl ester (FAME) biodiesel have become more prevalent. However, toxicity of exhaust material from their combustion, relative to the fuels they are displacing has not been fully characterised. This study was carried out to examine particle toxicity within the lung epithelium and the role for polycyclic aromatic hydrocarbons (PAHs). Exhaust particles from a 20% (v/v) blend of FAME biodiesel had little impact on primary airway epithelial toxicity compared to FD derived particles but did result in an altered profile of PAHs, including an increase in particle bound carcinogenic B[a]P. Higher blends of biodiesel had significantly increased levels of more carcinogenic PAHs, which was associated with a higher level of stress response gene expression including CYP1A1, NQO1 and IL1B. Removal of semi-volatile material from particulates abolished effects on airway cells. Particle size difference and toxic metals were discounted as causative for biological effects. Finally, combustion of a single component fuel (Methyl decanoate) containing the methyl ester molecular structure found in FAME mixtures, also produced more carcinogenic PAHs at the higher fuel blend levels. These results indicate the use of FAME biodiesel at higher blends may be associated with an increased particle associated carcinogenic and toxicity risk.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Biofuels/toxicity , Biofuels/analysis , Particulate Matter/analysis , Vehicle Emissions/toxicity , Vehicle Emissions/analysis , Carcinogens , Gasoline/analysis
5.
Cell Biol Toxicol ; 39(1): 1-18, 2023 02.
Article in English | MEDLINE | ID: mdl-35641671

ABSTRACT

The airway epithelium represents the main barrier between inhaled air and the tissues of the respiratory tract and is therefore an important point of contact with xenobiotic substances into the human body. Several studies have recently shown that in vitro models of the airway grown at an air-liquid interface (ALI) can be particularly useful to obtain mechanistic information about the toxicity of chemical compounds. However, such methods are not very amenable to high throughput since the primary cells cannot be expanded indefinitely in culture to obtain a sustainable number of cells. Induced pluripotent stem cells (iPSCs) have become a popular option in the recent years for modelling the airways of the lung, but despite progress in the field, such models have so far not been assessed for their ability to metabolise xenobiotic compounds and how they compare to the primary bronchial airway model (pBAE). Here, we report a comparative analysis by TempoSeq (oligo-directed sequencing) of an iPSC-derived airway model (iBAE) with a primary bronchial airway model (pBAE). The iBAE and pBAE were differentiated at an ALI and then evaluated in a 5-compound screen with exposure to a sub-lethal concentration of each compound for 24 h. We found that despite lower expression of xenobiotic metabolism genes, the iBAE similarly predicted the toxic pathways when compared to the pBAE model. Our results show that iPSC airway models at ALI show promise for inhalation toxicity assessments with further development.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Transcriptome , Xenobiotics/toxicity , Xenobiotics/metabolism , Respiratory Mucosa/metabolism , Epithelium , Epithelial Cells/metabolism
6.
Toxics ; 10(10)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36287882

ABSTRACT

Decommissioning fission and fusion facilities can result in the production of airborne particles containing tritium that could inadvertently be inhaled by workers directly involved in the operations, and potentially others, resulting in internal exposures to tritium. Of particular interest in this context, given the potentially large masses of material involved, is tritiated steel. The International Commission on Radiological Protection (ICRP) has recommended committed effective dose coefficients for inhalation of some tritiated materials, but not specifically for tritiated steel. The lack of a dose coefficient for tritiated steel is a concern given the potential importance of the material. To address this knowledge gap, a "dissolution" study, in vivo biokinetic study in a rodent model (1 MBq intratracheal instillation, 3-month follow-up) and associated state-of-the-art modelling were undertaken to derive dose coefficients for model tritiated steel particles. A committed effective dose coefficient for the inhalation of 3.3 × 10-12 Sv Bq-1 was evaluated for the particles, reflecting an activity median aerodynamic diameter (AMAD) of 13.3 µm, with the value for a reference AMAD for workers (5 µm) of 5.6 × 10-12 Sv Bq-1 that may be applied to occupational inhalation exposure to tritiated steel particles.

7.
Nat Aging ; 2(6): 484-493, 2022 06.
Article in English | MEDLINE | ID: mdl-37034474

ABSTRACT

Epigenetic clocks are mathematically derived age estimators that are based on combinations of methylation values that change with age at specific CpGs in the genome. These clocks are widely used to measure the age of tissues and cells1,2. The discrepancy between epigenetic age (EpiAge), as estimated by these clocks, and chronological age is referred to as EpiAge acceleration. Epidemiological studies have linked EpiAge acceleration to a wide variety of pathologies, health states, lifestyle, mental state and environmental factors2, indicating that epigenetic clocks tap into critical biological processes that are involved in aging. Despite the importance of this inference, the mechanisms underpinning these clocks remained largely uncharacterized and unelucidated. Here, using primary human cells, we set out to investigate whether epigenetic aging is the manifestation of one or more of the aging hallmarks previously identified3. We show that although epigenetic aging is distinct from cellular senescence, telomere attrition and genomic instability, it is associated with nutrient sensing, mitochondrial activity and stem cell composition.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Humans , DNA Methylation/genetics , Aging/genetics , Cellular Senescence/genetics , Epigenomics
8.
Respiration ; 101(3): 321-333, 2022.
Article in English | MEDLINE | ID: mdl-34649249

ABSTRACT

Small airways (SA) in humans are commonly defined as those conducting airways <2 mm in diameter. They are susceptible to particle- and chemical-induced injury and play a major role in the development of airway disease such as COPD and asthma. Susceptibility to injury can be attributed in part to structural features including airflow dynamics and tissue architecture, but recent evidence may indicate a more prominent role for cellular composition in directing toxicological responses. Animal studies support the hypothesis that inherent cellular differences across the tracheobronchial tree, including metabolic CYP450 expression in the distal conducting airways, can influence SA susceptibility to injury. Currently, there is insufficient information in humans to make similar conclusions, prompting further necessary work in this area. An understanding of why the SA are more susceptible to certain chemical and particle exposures than other airway regions is fundamental to our ability to identify hazardous materials, their properties, and accompanying exposure scenarios that compromise lung function. It is also important for the ability to develop appropriate models for toxicity testing. Moreover, it is central to our understanding of SA disease aetiology and how interventional strategies for treatment may be developed. In this review, we will document the structural and cellular airway regional differences that are likely to influence airway susceptibility to injury, including the role of secretory club cells. We will also describe recent advances in single-cell sequencing of human airways, which have provided unprecedented details of cell phenotype, likely to impact airway chemical and particle injury.


Subject(s)
Asthma , Pulmonary Disease, Chronic Obstructive , Animals , Bronchi/physiology , Humans , Lung , Thorax
9.
Toxicol In Vitro ; 75: 105198, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34097952

ABSTRACT

Paraquat (PQ) is a redox cycling herbicide known for its acute toxicity in humans. Airway parenchymal cells have been identified as primary sites for PQ accumulation, tissue inflammation and cellular injury. However, the role of immune cells in PQ induced tissue injury is largely unknown. To explore this further, primary cultures of human CD34+ stem cell derived macrophages (MCcd34) and dendritic cells (DCcd34) were established and characterised using RNA-Seq profiling. The impact of PQ on DCcd34 and MCcd34 cytotoxicity revealed increased effect within DCcd34 cultures. PQ toxicity mechanisms were examined using sub-cytotoxic concentrations and TempO-seq transcriptomic assays. Comparable increases for several stress response pathway (NFE2L2, NF-kB and HSF) dependent genes were observed across both cell types. Interestingly, PQ induced unfolded protein response (UPR), p53, Irf and DC maturation genes in DCcd34 but not in MCcd34. Further exploration of the immune modifying potential of PQ was performed using the common allergen house dust mite (HD). Co-treatment of PQ and HD resulted in enhanced inflammatory responses within MCcd34 but not DCcd34. These results demonstrate immune cell type differential responses to PQ, that may underlie aspects of acute toxicity and susceptibility to inflammatory disease.


Subject(s)
Allergens/administration & dosage , Antigens, CD34/immunology , Dendritic Cells/drug effects , Herbicides/toxicity , Macrophages/drug effects , Paraquat/toxicity , Pyroglyphidae/immunology , Animals , Cell Survival/drug effects , Dendritic Cells/immunology , Humans , Macrophages/immunology
10.
Environ Toxicol Pharmacol ; 73: 103273, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31629203

ABSTRACT

Cerium dioxide nanoparticles (CeO2NPs) have been used as diesel fuel-borne catalysts for improved efficiency and pollutant emissions. Concerns that such material may influence diesel exhaust particle (DEP) effects within the lung upon inhalation, prompted us to examine particle responses in mice in the presence and absence of the common allergen house dust mite (HDM). Repeated intranasal instillation of combined HDM and DEP increased airway mucin, eosinophils, lymphocytes, IL-5, IL-13, IL-17A and plasma IgE, which were further increased with CeO2NPs co-exposure. A single co-exposure of CeO2NPs and DEP after repeated HDM exposure increased macrophage and IL-17A levels above DEP induced levels. CeO2NPs exposure in the absence of HDM also resulted in increased levels of plasma IgE and airway mucin staining, changes not observed with repeated DEP exposure alone. These observations indicate that CeO2NPs can modify exhaust particulate and allergen induced inflammatory events in the lung with the potential to influence conditions such as allergic airway disease.


Subject(s)
Cerium/toxicity , Nanoparticles/toxicity , Pyroglyphidae , Respiratory Hypersensitivity , Vehicle Emissions/toxicity , Allergens , Animals , Dust , Inflammation , Interleukin-17 , Lung/immunology , Mice , Particulate Matter
11.
ACS Nano ; 13(4): 4834-4842, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30943001

ABSTRACT

Geobacter sulfurreducens is of interest for the highest efficiency of power generation and extremely long extracellular electron transfer (EET) between the bacterium and electrodes. Despite more than 15 years of intensive molecular biological research, there is still no clear answer which molecules are responsible for these processes. In the present work, we look at the problem from another (atomic) perspective and identify the location and shape of the compounds that are known to be conductive, particularly those containing Fe atoms. By using highly sophisticated energy dispersive X-ray spectroscopy combined with high-angle annular dark-field transmission electron microscopy enabling detection, identification, and localization of chemical compounds on the surface at nearly atomic spatial resolution, we analyze Fe spatial distribution within the G. sulfurreducens community. We discover the presence of small Fe-containing particles on the surface of the bacterium cells. The size of the particles (diameter 5.6 nm) is highly reproducible and comparable with the size of a single protein. The particles cover about 2% of the cell surface, which is similar to that expected for molecular conductors responsible for electron transfer through the bacterium cell wall. We find that G. sulfurreducens filaments ("bacterial molecular wires") also contain Fe atoms in their bundles. We observe that the bacterium enable changing the distance between the Fe-containing bundles in the filaments from separated to attached (the latter is needed for the efficient electron transfer between the Fe-containing particles), depending on the bacterium metabolic activity and attachment to extracellular substrates. These results are consistent with the recently published research about the role of Fe atoms in protein molecular conductance ( Phys. Chem. Chem. Phys. , 2018 , 20 , 14072 - 14081 ) and show what type of Fe-containing particles are involved in the bacterial extracellular communication. They can be used for the design and construction of artificial biomolecular wires and bioinorganic interfaces.


Subject(s)
Fimbriae, Bacterial/chemistry , Geobacter/chemistry , Iron/analysis , Electric Conductivity , Electron Transport , Fimbriae, Bacterial/ultrastructure , Geobacter/cytology , Geobacter/ultrastructure , Particle Size , Surface Properties
12.
Nanotoxicology ; 13(6): 733-750, 2019 08.
Article in English | MEDLINE | ID: mdl-30704321

ABSTRACT

Cerium oxide nanoparticles (CeO2NPs), used in some diesel fuel additives to improve fuel combustion efficiency and exhaust filter operation, have been detected in ambient air and concerns have been raised about their potential human health impact. The majority of CeO2NP inhalation studies undertaken to date have used aerosol particles of larger sizes than the evidence suggests are emitted from vehicles using such fuel additives. Hence, the objective of this study was to investigate the effects of inhaled CeO2NP aerosols of a more environmentally relevant size, utilizing a combination of methods, including untargeted multi-omics to enable the broadest possible survey of molecular responses and synchrotron X-ray spectroscopy to investigate cerium speciation. Male Sprague-Dawley rats were exposed by nose-only inhalation to aerosolized CeO2NPs (mass concentration 1.8 mg/m3, aerosol count median diameter 40 nm) for 3 h/d for 4 d/week, for 1 or 2 weeks and sacrificed at 3 and 7 d post-exposure. Markers of inflammation changed significantly in a dose- and time-dependent manner, which, combined with results from lung histopathology and gene expression analyses suggest an inflammatory response greater than that seen in studies using micron-sized ceria aerosols. Lipidomics of lung tissue revealed changes to minor lipid species, implying specific rather than general cellular effects. Cerium speciation analysis indicated a change in Ce3+/Ce4+ ratio within lung tissue. Collectively, these results in conjunction with earlier studies emphasize the importance of aerosol particle size on toxicity determination. Furthermore, the limited effect resolution within 7 d suggested the possibility of longer-term effects.


Subject(s)
Cerium/toxicity , Inhalation Exposure/adverse effects , Lung/drug effects , Nanoparticles/toxicity , Pneumonia/chemically induced , Vehicle Emissions/toxicity , Aerosols , Animals , Cerium/metabolism , Humans , Inflammation , Lung/metabolism , Lung/pathology , Male , Nanoparticles/metabolism , Particle Size , Pneumonia/immunology , Rats , Rats, Sprague-Dawley
13.
Part Fibre Toxicol ; 15(1): 24, 2018 05 23.
Article in English | MEDLINE | ID: mdl-29792201

ABSTRACT

BACKGROUND: Nanomaterial inhalation represents a potential hazard for respiratory conditions such as asthma. Cerium dioxide nanoparticles (CeO2NPs) have the ability to modify disease outcome but have not been investigated for their effect on models of asthma and inflammatory lung disease. The aim of this study was to examine the impact of CeO2NPs in a house dust mite (HDM) induced murine model of asthma. RESULTS: Repeated intranasal instillation of CeO2NPs in the presence of HDM caused the induction of a type II inflammatory response, characterised by increased bronchoalveolar lavage eosinophils, mast cells, total plasma IgE and goblet cell metaplasia. This was accompanied by increases in IL-4, CCL11 and MCPT1 gene expression together with increases in the mucin and inflammatory regulators CLCA1 and SLC26A4. CLCA1 and SLC26A4 were also induced by CeO2NPs + HDM co-exposure in air liquid interface cultures of human primary bronchial epithelial cells. HDM induced airway hyperresponsiveness and airway remodelling in mice were not altered with CeO2NPs co-exposure. Repeated HMD instillations followed by a single exposure to CeO2NPs failed to produce changes in type II inflammatory endpoints but did result in alterations in the neutrophil marker CD177. Treatment of mice with CeO2NPs in the absence of HDM did not have any significant effects. RNA-SEQ was used to explore early effects 24 h after single treatment exposures. Changes in SAA3 expression paralleled increased neutrophil BAL levels, while no changes in eosinophil or lymphocyte levels were observed. HDM resulted in a strong induction of type I interferon and IRF3 dependent gene expression, which was inhibited with CeO2NPs co-exposure. Changes in the expression of genes including CCL20, CXCL10, NLRC5, IRF7 and CLEC10A suggest regulation of dendritic cells, macrophage functionality and IRF3 modulation as key early events in how CeO2NPs may guide pulmonary responses to HDM towards type II inflammation. CONCLUSIONS: CeO2NPs were observed to modulate the murine pulmonary response to house dust mite allergen exposure towards a type II inflammatory environment. As this type of response is present within asthmatic endotypes this finding may have implications for how occupational or incidental exposure to CeO2NPs should be considered for those susceptible to disease.


Subject(s)
Airway Remodeling/drug effects , Asthma/chemically induced , Cerium/toxicity , Nanoparticles/toxicity , Pyroglyphidae/immunology , Airway Remodeling/immunology , Animals , Asthma/immunology , Cells, Cultured , Cerium/chemistry , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/immunology , Female , Gene Expression/drug effects , Gene Expression/immunology , Humans , Inhalation Exposure/adverse effects , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/immunology , Interferon Type I/genetics , Interferon Type I/immunology , Mice, Inbred BALB C , Nanoparticles/chemistry
14.
Nanotoxicology ; 12(6): 539-553, 2018 08.
Article in English | MEDLINE | ID: mdl-29750584

ABSTRACT

Experimental modeling to identify specific inhalation hazards for nanomaterials has in the main focused on in vivo approaches. However, these models suffer from uncertainties surrounding species-specific differences and cellular targets for biologic response. In terms of pulmonary exposure, approaches which combine 'inhalation-like' nanoparticulate aerosol deposition with relevant human cell and tissue air-liquid interface cultures are considered an important complement to in vivo work. In this study, we utilized such a model system to build on previous results from in vivo exposures, which highlighted the small airway epithelium as a target for silver nanoparticle (AgNP) deposition. RNA-SEQ was used to characterize alterations in mRNA and miRNA within the lung. Organotypic-reconstituted 3D human primary small airway epithelial cell cultures (SmallAir) were exposed to the same spark-generated AgNP and at the same dose used in vivo, in an aerosol-exposure air-liquid interface (AE-ALI) system. Adverse effects were characterized using lactate, LDH release and alterations in mRNA and miRNA. Modest toxicological effects were paralleled by significant regulation in gene expression, reflective mainly of specific inflammatory events. Importantly, there was a level of concordance between gene expression changes observed in vitro and in vivo. We also observed a significant correlation between AgNP and mass equivalent silver ion (Ag+) induced transcriptional changes in SmallAir cultures. In addition to key mechanistic information relevant for our understanding of the potential health risks associated with AgNP inhalation exposure, this work further highlights the small airway epithelium as an important target for adverse effects.


Subject(s)
Lung/drug effects , Metal Nanoparticles/toxicity , Silver/toxicity , Aerosols , Animals , Cells, Cultured , Epithelium/drug effects , Epithelium/metabolism , Humans , Inhalation Exposure , Lung/metabolism , Male , Rats , Rats, Sprague-Dawley
15.
Front Microbiol ; 9: 3266, 2018.
Article in English | MEDLINE | ID: mdl-30705670

ABSTRACT

The term microbiome describes the genetic material encoding the various microbial populations that inhabit our body. Whilst colonization of various body niches (e.g., the gut) by dynamic communities of microorganisms is now universally accepted, the existence of microbial populations in other "classically sterile" locations, including the blood, is a relatively new concept. The presence of bacteria-specific DNA in the blood has been reported in the literature for some time, yet the true origin of this is still the subject of much deliberation. The aim of this study was to investigate the phenomenon of a "blood microbiome" by providing a comprehensive description of bacterially derived nucleic acids using a range of complementary molecular and classical microbiological techniques. For this purpose we utilized a set of plasma samples from healthy subjects (n = 5) and asthmatic subjects (n = 5). DNA-level analyses involved the amplification and sequencing of the 16S rRNA gene. RNA-level analyses were based upon the de novo assembly of unmapped mRNA reads and subsequent taxonomic identification. Molecular studies were complemented by viability data from classical aerobic and anaerobic microbial culture experiments. At the phylum level, the blood microbiome was predominated by Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes. The key phyla detected were consistent irrespective of molecular method (DNA vs. RNA), and consistent with the results of other published studies. In silico comparison of our data with that of the Human Microbiome Project revealed that members of the blood microbiome were most likely to have originated from the oral or skin communities. To our surprise, aerobic and anaerobic cultures were positive in eight of out the ten donor samples investigated, and we reflect upon their source. Our data provide further evidence of a core blood microbiome, and provide insight into the potential source of the bacterial DNA/RNA detected in the blood. Further, data reveal the importance of robust experimental procedures, and identify areas for future consideration.

16.
Part Fibre Toxicol ; 14(1): 45, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29157272

ABSTRACT

Asthma is a chronic respiratory disease known for its high susceptibility to environmental exposure. Inadvertent inhalation of engineered or incidental nanomaterials is a concern for human health, particularly for those with underlying disease susceptibility. In this review we provide a comprehensive analysis of those studies focussed on safety assessment of different nanomaterials and their unique characteristics on asthma and allergic airway disease. These include in vivo and in vitro approaches as well as human and population studies. The weight of evidence presented supports a modifying role for nanomaterial exposure on established asthma as well as the development of the condition. Due to the variability in modelling approaches, nanomaterial characterisation and endpoints used for assessment in these studies, there is insufficient information for how one may assign relative hazard potential to individual nanoscale properties. New developments including the adoption of standardised models and focussed in vitro and in silico approaches have the potential to more reliably identify properties of concern through comparative analysis across robust and select testing systems. Importantly, key to refinement and choice of the most appropriate testing systems is a more complete understanding of how these materials may influence disease at the cellular and molecular level. Detailed mechanistic insight also brings with it opportunities to build important population and exposure susceptibilities into models. Ultimately, such approaches have the potential to more clearly extrapolate relevant toxicological information, which can be used to improve nanomaterial safety assessment for human disease susceptibility.


Subject(s)
Air Pollutants/adverse effects , Asthma/chemically induced , Inhalation Exposure/adverse effects , Lung/drug effects , Nanostructures/adverse effects , Respiratory Hypersensitivity/chemically induced , Animals , Asthma/immunology , Asthma/physiopathology , Cytokines/immunology , Humans , Inflammation Mediators/immunology , Lung/immunology , Lung/physiopathology , Respiratory Hypersensitivity/immunology , Respiratory Hypersensitivity/physiopathology , Risk Assessment , Risk Factors
17.
Toxicol In Vitro ; 45(Pt 3): 409-416, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28655636

ABSTRACT

Air pollution affects a large proportion of the population particularly in urban areas, with diesel particulates recognised as particular causes for concern in respiratory conditions such as asthma. In this study we examined the response of human primary airway epithelial cells to diesel particulate chemical extracts (DE) and characterised gene expression alterations using RNA-SEQ. Using the antagonist CH223191, DE induced CYP1A1 and attenuation of CXCL10 among other genes were observed to be aryl hydrocarbon receptor dependent. Basal and toll like receptor dependent protein levels for CXCL10 were markedly reduced. Investigation of similar regulation in plasmacytoid dendritic GEN2.2 cells did not show DE dependent regulation of CXCL10. Instillation of DE into mice to recapitulate airway epithelial exposure to chemical extracts in an in vivo setting failed to demonstrate a reduction in CXCL10. There was however an increase in the Th2 type epithelial cell derived inflammatory mediators TSLP and SERPINB2. We also observed an increased macrophages and a decrease in the proportion of lymphocytes in bronchoalveolar lavage fluid. CXCL10 can play a role in allergic airway disease through recruitment of Th1 type CD4+ T-cells, which can act to counterbalance Th2 type allergic responses. Modulation of such chemokines within the airway epithelium may represent a mechanism through which pollutant material can modify respiratory conditions such as allergic asthma.


Subject(s)
Air Pollutants/toxicity , Bronchi/cytology , Bronchi/drug effects , Chemokine CXCL10/biosynthesis , Epithelial Cells/drug effects , Particulate Matter/toxicity , Vehicle Emissions/toxicity , Animals , Bronchoalveolar Lavage Fluid/cytology , Chemokine CXCL10/antagonists & inhibitors , Chemokine CXCL10/genetics , Dendritic Cells , Female , Gene Expression Regulation/drug effects , Humans , Lung/drug effects , Lung/metabolism , Mice , Mice, Inbred BALB C , Primary Cell Culture , Th2 Cells/drug effects
18.
Toxicol Res (Camb) ; 5(3): 816-827, 2016 May 01.
Article in English | MEDLINE | ID: mdl-30090392

ABSTRACT

Polycyclic aromatic hydrocarbons including Benzo[a]pyrene have been recognised as important pollutant chemicals with the potential to influence the respiratory system in disease. Airway epithelial cells are an integral component of how immune responses are directed as a consequence of exposure to inhaled material. It was aim of this study to examine how such cells respond to PAH exposure and to characterise the immune response. Human primary bronchial epithelial cells (HPBECs) were exposed to Benzo[a]pyrene, Benzo[e]pyrene, Fluoranthene and Benzo[b]fluoranthene for 24 h and a repeat exposure up to 7 days, and examined for global gene expression using RNA-Seq. In addition to increased expression of CYP1A1 and other AHR dependent changes, we identified significant increases in innate and adaptive immune signals including, IL-1A, IL-19, SERPINB2, STAT6, HLA-DMB and HLA-DRA. We also observed increased expression of HMOX1 and NQO1, genes involved in the response to oxidative stress. Immune system related gene expression was differentially induced by each compound with Benzo[a]pyrene and Benzo[b]fluoranthene demonstrating the most potent responses. Differential induction paralleled the level to which AHR dependent gene expression and oxidative stress markers were induced. We also observed similar levels of gene expression when cells were exposed to organic extracts from diesel exhaust particles. In conclusion, hazard characterisation of responses to PAH exposure in HPBECs highlights specific responses of both innate and adaptive immunity.

19.
Eur J Immunol ; 45(6): 1842-54, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25763771

ABSTRACT

B cells have been described as having the capacity to regulate cellular immune responses and suppress inflammatory processes. One such regulatory B-cell population is defined as IL-10-producing CD19(+) CD1d(hi) cells. Previous work has identified an expansion of these cells in mice infected with the helminth, Schistosoma mansoni. Here, microarray analysis of CD19(+) CD1d(hi) B cells from mice infected with S. mansoni demonstrated significantly increased Tlr7 expression, while CD19(+) CD1d(hi) B cells from uninfected mice also demonstrated elevated Tlr7 expression. Using IL-10 reporter, Il10(-/-) and Tlr7(-/-) mice, we formally demonstrate that TLR7 ligation of CD19(+) CD1d(hi) B cells increases their capacity to produce IL-10. In a mouse model of allergic lung inflammation, the adoptive transfer of TLR7-elicited CD19(+) CD1d(hi) B cells reduced airway inflammation and associated airway hyperresponsiveness. Using DEREG mice to deplete FoxP3(+) T regulatory cells in allergen-sensitized mice, we show that that TLR7-elicited CD19(+) CD1d(hi) B cells suppress airway hyperresponsiveness via a T regulatory cell dependent mechanism. These studies identify that TLR7 stimulation leads to the expansion of IL-10-producing CD19(+) CD1d(hi) B cells, which can suppress allergic lung inflammation via T regulatory cells.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Pneumonia/immunology , Pneumonia/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Toll-Like Receptor 7/metabolism , Animals , Antigens, CD19/metabolism , Antigens, CD1d/metabolism , Disease Models, Animal , Humans , Hypersensitivity/immunology , Hypersensitivity/metabolism , Interleukin-10/biosynthesis , Mice , Mice, Knockout , Ovalbumin/adverse effects , Pneumonia/parasitology , Protein Binding , Respiratory Hypersensitivity/immunology , Respiratory Hypersensitivity/metabolism , Respiratory Hypersensitivity/parasitology , Schistosoma mansoni/immunology , Schistosomiasis mansoni/immunology , Schistosomiasis mansoni/metabolism , Up-Regulation
20.
Toxicol In Vitro ; 30(1 Pt A): 7-18, 2015 Dec 25.
Article in English | MEDLINE | ID: mdl-25596134

ABSTRACT

High content omic methods provide a deep insight into cellular events occurring upon chemical exposure of a cell population or tissue. However, this improvement in analytic precision is not yet matched by a thorough understanding of molecular mechanisms that would allow an optimal interpretation of these biological changes. For transcriptomics (TCX), one type of molecular effects that can be assessed already is the modulation of the transcriptional activity of a transcription factor (TF). As more ChIP-seq datasets reporting genes specifically bound by a TF become publicly available for mining, the generation of target gene lists of TFs of toxicological relevance becomes possible, based on actual protein-DNA interaction and modulation of gene expression. In this study, we generated target gene signatures for Nrf2, ATF4, XBP1, p53, HIF1a, AhR and PPAR gamma and tracked TF modulation in a large collection of in vitro TCX datasets from renal and hepatic cell models exposed to clinical nephro- and hepato-toxins. The result is a global monitoring of TF modulation with great promise as a mechanistically based tool for chemical hazard identification.


Subject(s)
Chromatin Immunoprecipitation , Gene Expression Regulation/physiology , Hazardous Substances/toxicity , Transcriptome , Animals , Cell Line , Databases, Factual , Gene Expression Profiling , Humans , Ligands , Oligonucleotide Array Sequence Analysis , Sequence Analysis, DNA , Software , Stress, Physiological , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...